Skip to main content

ncnn is a high-performance neural network inference framework optimized for the mobile platform

Project description

ncnn

License download codecov Language grade: C/C++

ncnn is a high-performance neural network inference computing framework optimized for mobile platforms. ncnn is deeply considerate about deployment and uses on mobile phones from the beginning of design. ncnn does not have third party dependencies. It is cross-platform, and runs faster than all known open source frameworks on mobile phone cpu. Developers can easily deploy deep learning algorithm models to the mobile platform by using efficient ncnn implementation, create intelligent APPs, and bring the artificial intelligence to your fingertips. ncnn is currently being used in many Tencent applications, such as QQ, Qzone, WeChat, Pitu and so on.

ncnn 是一个为手机端极致优化的高性能神经网络前向计算框架。ncnn 从设计之初深刻考虑手机端的部署和使用。无第三方依赖,跨平台,手机端 cpu 的速度快于目前所有已知的开源框架。基于 ncnn,开发者能够将深度学习算法轻松移植到手机端高效执行,开发出人工智能 APP,将 AI 带到你的指尖。ncnn 目前已在腾讯多款应用中使用,如 QQ,Qzone,微信,天天P图等。


技术交流QQ群:637093648(超多大佬) 答案:卷卷卷卷卷 (已满)

Pocky QQ群(MLIR YES!): 677104663(超多大佬) 答案:multi-level intermediate representation

Telegram Group https://t.me/ncnnyes

Discord Channel https://discord.gg/YRsxgmF


Current building status matrix

System CPU (32bit) CPU (64bit) GPU (32bit) GPU (64bit)
Linux (GCC) Build Status Build Status Build Status
Linux (Clang) Build Status Build Status Build Status
Linux (ARM) Build Status Build Status
Linux (MIPS) Build Status Build Status
Linux (RISC-V) Build Status
Linux (LoongArch) Build Status
Windows Build Status Build Status Build Status
Windows (ARM) Build Status Build Status
macOS Build Status Build Status
macOS (ARM) Build Status Build Status
Android Build Status Build Status Build Status Build Status
Android-x86 Build Status Build Status Build Status Build Status
iOS Build Status Build Status Build Status
iOS Simulator Build Status Build Status
WebAssembly Build Status
RISC-V GCC/Newlib Build Status Build Status

Support most commonly used CNN network

支持大部分常用的 CNN 网络


HowTo

how to build ncnn library on Linux / Windows / macOS / Raspberry Pi3 / Android / NVIDIA Jetson / iOS / WebAssembly / AllWinner D1 / Loongson 2K1000

download prebuild binary package for android and ios

use ncnn with alexnet with detailed steps, recommended for beginners :)

ncnn 组件使用指北 alexnet 附带详细步骤,新人强烈推荐 :)

use netron for ncnn model visualization

out-of-the-box web model conversion

ncnn low-level operation api

ncnn param and model file spec

ncnn operation param weight table

how to implement custom layer step by step


FAQ

ncnn throw error

ncnn produce wrong result

ncnn vulkan


Features

  • Supports convolutional neural networks, supports multiple input and multi-branch structure, can calculate part of the branch
  • No third-party library dependencies, does not rely on BLAS / NNPACK or any other computing framework
  • Pure C++ implementation, cross-platform, supports android, ios and so on
  • ARM NEON assembly level of careful optimization, calculation speed is extremely high
  • Sophisticated memory management and data structure design, very low memory footprint
  • Supports multi-core parallel computing acceleration, ARM big.LITTLE cpu scheduling optimization
  • Supports GPU acceleration via the next-generation low-overhead vulkan api
  • Extensible model design, supports 8bit quantization and half-precision floating point storage, can import caffe/pytorch/mxnet/onnx/darknet/keras/tensorflow(mlir) models
  • Support direct memory zero copy reference load network model
  • Can be registered with custom layer implementation and extended
  • Well, it is strong, not afraid of being stuffed with 卷 QvQ

功能概述

  • 支持卷积神经网络,支持多输入和多分支结构,可计算部分分支
  • 无任何第三方库依赖,不依赖 BLAS/NNPACK 等计算框架
  • 纯 C++ 实现,跨平台,支持 android ios 等
  • ARM NEON 汇编级良心优化,计算速度极快
  • 精细的内存管理和数据结构设计,内存占用极低
  • 支持多核并行计算加速,ARM big.LITTLE cpu 调度优化
  • 支持基于全新低消耗的 vulkan api GPU 加速
  • 可扩展的模型设计,支持 8bit 量化 和半精度浮点存储,可导入 caffe/pytorch/mxnet/onnx/darknet/keras/tensorflow(mlir) 模型
  • 支持直接内存零拷贝引用加载网络模型
  • 可注册自定义层实现并扩展
  • 恩,很强就是了,不怕被塞卷 QvQ

supported platform matrix

  • ✅ = known work and runs fast with good optimization
  • ✔️ = known work, but speed may not be fast enough
  • ❔ = shall work, not confirmed
  • / = not applied
Windows Linux Android macOS iOS
intel-cpu ✔️ ✔️ ✔️ /
intel-gpu ✔️ ✔️ /
amd-cpu ✔️ ✔️ ✔️ /
amd-gpu ✔️ ✔️ /
nvidia-gpu ✔️ ✔️ /
qcom-cpu ✔️ / /
qcom-gpu ✔️ ✔️ / /
arm-cpu / /
arm-gpu ✔️ / /
apple-cpu / / / ✔️
apple-gpu / / / ✔️ ✔️

Example project


License

BSD 3 Clause

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ncnn-1.0.20220721.tar.gz (38.8 kB view details)

Uploaded Source

Built Distributions

ncnn-1.0.20220721-pp39-pypy39_pp73-win_amd64.whl (1.9 MB view details)

Uploaded PyPy Windows x86-64

ncnn-1.0.20220721-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

ncnn-1.0.20220721-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

ncnn-1.0.20220721-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

ncnn-1.0.20220721-pp38-pypy38_pp73-win_amd64.whl (1.9 MB view details)

Uploaded PyPy Windows x86-64

ncnn-1.0.20220721-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

ncnn-1.0.20220721-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

ncnn-1.0.20220721-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

ncnn-1.0.20220721-pp37-pypy37_pp73-win_amd64.whl (1.9 MB view details)

Uploaded PyPy Windows x86-64

ncnn-1.0.20220721-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

ncnn-1.0.20220721-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

ncnn-1.0.20220721-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

ncnn-1.0.20220721-cp310-cp310-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

ncnn-1.0.20220721-cp310-cp310-win32.whl (1.7 MB view details)

Uploaded CPython 3.10 Windows x86

ncnn-1.0.20220721-cp310-cp310-musllinux_1_1_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

ncnn-1.0.20220721-cp310-cp310-musllinux_1_1_s390x.whl (1.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ s390x

ncnn-1.0.20220721-cp310-cp310-musllinux_1_1_ppc64le.whl (1.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ppc64le

ncnn-1.0.20220721-cp310-cp310-musllinux_1_1_i686.whl (3.7 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

ncnn-1.0.20220721-cp310-cp310-musllinux_1_1_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

ncnn-1.0.20220721-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

ncnn-1.0.20220721-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (725.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

ncnn-1.0.20220721-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (913.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

ncnn-1.0.20220721-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (2.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

ncnn-1.0.20220721-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

ncnn-1.0.20220721-cp39-cp39-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

ncnn-1.0.20220721-cp39-cp39-win32.whl (1.7 MB view details)

Uploaded CPython 3.9 Windows x86

ncnn-1.0.20220721-cp39-cp39-musllinux_1_1_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

ncnn-1.0.20220721-cp39-cp39-musllinux_1_1_s390x.whl (1.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ s390x

ncnn-1.0.20220721-cp39-cp39-musllinux_1_1_ppc64le.whl (1.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ppc64le

ncnn-1.0.20220721-cp39-cp39-musllinux_1_1_i686.whl (3.7 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

ncnn-1.0.20220721-cp39-cp39-musllinux_1_1_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

ncnn-1.0.20220721-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

ncnn-1.0.20220721-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (725.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

ncnn-1.0.20220721-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (913.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

ncnn-1.0.20220721-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

ncnn-1.0.20220721-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

ncnn-1.0.20220721-cp38-cp38-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

ncnn-1.0.20220721-cp38-cp38-win32.whl (1.7 MB view details)

Uploaded CPython 3.8 Windows x86

ncnn-1.0.20220721-cp38-cp38-musllinux_1_1_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

ncnn-1.0.20220721-cp38-cp38-musllinux_1_1_s390x.whl (1.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ s390x

ncnn-1.0.20220721-cp38-cp38-musllinux_1_1_ppc64le.whl (1.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ppc64le

ncnn-1.0.20220721-cp38-cp38-musllinux_1_1_i686.whl (3.7 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

ncnn-1.0.20220721-cp38-cp38-musllinux_1_1_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

ncnn-1.0.20220721-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

ncnn-1.0.20220721-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (724.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

ncnn-1.0.20220721-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (912.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

ncnn-1.0.20220721-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (2.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

ncnn-1.0.20220721-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

ncnn-1.0.20220721-cp37-cp37m-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

ncnn-1.0.20220721-cp37-cp37m-win32.whl (1.7 MB view details)

Uploaded CPython 3.7m Windows x86

ncnn-1.0.20220721-cp37-cp37m-musllinux_1_1_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

ncnn-1.0.20220721-cp37-cp37m-musllinux_1_1_s390x.whl (1.3 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ s390x

ncnn-1.0.20220721-cp37-cp37m-musllinux_1_1_ppc64le.whl (1.5 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ppc64le

ncnn-1.0.20220721-cp37-cp37m-musllinux_1_1_i686.whl (3.7 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

ncnn-1.0.20220721-cp37-cp37m-musllinux_1_1_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

ncnn-1.0.20220721-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

ncnn-1.0.20220721-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (734.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

ncnn-1.0.20220721-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (924.6 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

ncnn-1.0.20220721-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (2.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

ncnn-1.0.20220721-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

ncnn-1.0.20220721-cp36-cp36m-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.6m Windows x86-64

ncnn-1.0.20220721-cp36-cp36m-win32.whl (1.7 MB view details)

Uploaded CPython 3.6m Windows x86

ncnn-1.0.20220721-cp36-cp36m-musllinux_1_1_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

ncnn-1.0.20220721-cp36-cp36m-musllinux_1_1_s390x.whl (1.3 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ s390x

ncnn-1.0.20220721-cp36-cp36m-musllinux_1_1_ppc64le.whl (1.5 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ ppc64le

ncnn-1.0.20220721-cp36-cp36m-musllinux_1_1_i686.whl (3.7 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

ncnn-1.0.20220721-cp36-cp36m-musllinux_1_1_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ ARM64

ncnn-1.0.20220721-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

ncnn-1.0.20220721-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl (734.3 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ s390x

ncnn-1.0.20220721-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (923.3 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ppc64le

ncnn-1.0.20220721-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (2.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

ncnn-1.0.20220721-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

File details

Details for the file ncnn-1.0.20220721.tar.gz.

File metadata

  • Download URL: ncnn-1.0.20220721.tar.gz
  • Upload date:
  • Size: 38.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for ncnn-1.0.20220721.tar.gz
Algorithm Hash digest
SHA256 691447961e7b4387a32f5dc149d572dd03482fa46f348a4c48af02df14d8a35a
MD5 87308e3484df581af7a519bfd195e13e
BLAKE2b-256 45d3ac2d4a7b36be5ae42d536570f0783f8fc451f1ff4fa2fd583feb8be0421c

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 4788e1ddb4ab4338beb1d52d888cd90721e815eacecbc74c03176640c9c532e5
MD5 d96cf0b0b6100e9834fa757a657f67f3
BLAKE2b-256 f16baf3a27828ffe23319c48abc65dbc812f1f2e3d9c1bf9f6e7412b62f8edee

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 63b259f6d11ee7315d0b6d995a2a4e4263be3570bc97a3b6b5169944594ede82
MD5 3956c26ef44a5829efe732077a825a8e
BLAKE2b-256 56be18af5d96a3699af5868e88881289c4780b7425fc4b667b55fec8e4692cb8

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8635d74bf11d3b73c7e2f3b5d9428657943f4b413cf6208d73d531730600508c
MD5 0f83cc98bf69bd01d969fd8ac4a2a49f
BLAKE2b-256 1047e66f507496c82de81671dcf483899300dec73168ffd1ac482e9206ddcdb0

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 20320d766122a99c7417aaa711ca79ef770fc9c2ce878d63906c941d38509db8
MD5 e7f7c61e1c3ae640552fa1e334c4751f
BLAKE2b-256 0f9fe3fd2a3e66a18ea468dd1bac1f690024c0f450c5e9bf57bdb54c0d5bb133

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 e0fc4f6db9f7a65a8ec20b6fb7cdf3bb49e896d2937984ba6d88adb54f9f3aae
MD5 e2bc1bdc4d8395f8fe1fd26b024a0ad5
BLAKE2b-256 653c076f9f870b621313a91f8114c81c13d72faef78f8a4d236ca9e4f5dd88e4

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ec4f69f8414c5ea5c9371c18e29f3122372f8219190da667b6b321c462d30a9f
MD5 69eef91507a2bce76c26f40512c03dd6
BLAKE2b-256 90acd5ddd75a8f3677320f3a46713dc2ee00700d3cb0ac2afe53ccfcefb9d3bb

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 afef700041e5ccc776e35851443807ac235a5222c5d2fde6050624d6735468cc
MD5 b6794105e3b2088f3b83f134657e152f
BLAKE2b-256 865c029ffe333f2034e29f2eeabc0182aa735f6d17d80cd8421ad604a86b9f49

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b4e4de9adb5e417e650b9bd572c210d34ea224d62dc8f2608ce85e6d36902b3c
MD5 cc430f8dc7f1b223a849d795181287ca
BLAKE2b-256 ffb4fe5895ce97430b360abbf4591101efe872749fb5156f202e16f4ed7f79e6

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 1a99979ce7beb374361af8b759f9a642316fb7fa9f6e06b1c3d3be93df658d17
MD5 91d453300515d6ec1ab7308aedde9d88
BLAKE2b-256 ff6f5158f4ee58463d89297457931518808f5367c7f7ed9e77a46732c7d1176f

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1ea286f7fb2e3ba3169e72e9e26f9cf084ffca1c9f55f56a2954570870d1809e
MD5 48a4c2e45534de1e74dab28f9b2b4dc0
BLAKE2b-256 d9e64427ba68d1eb036e8d5eef0e7ac7f9abb43b995ea70f1b9d46f0b7ebe3bc

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 92abb9fe8fe67893d6d94512e1f932e5cfa22c06680e55e331915324c68bec40
MD5 0857f34aa4aa49cb2c5618b5db053c72
BLAKE2b-256 21a7d7a39360b711a7a75fa179c084a1985e5b708dc03978a4f647d6ab05c7c7

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0fb30d56407420359088b74d2336bc183d24c9b98f1d08ccde1a249eba59e8a2
MD5 d6c3fe64ca43e4525858a47041bd105c
BLAKE2b-256 2f6c80a87dbb9a1c202042c578cab3241316bbb0591fccb9d27616d829fce4ea

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e678a4f29dfd0d810a12e5355fecadd10459f4ca9ff20b84e83238a11b6b6a18
MD5 8290301701e3337f6a1678886444f9ef
BLAKE2b-256 709ad751e5a206a1c98ec27d62f2bf9935e2e0a4229f5a7ac43735dd3d9196cd

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp310-cp310-win32.whl.

File metadata

  • Download URL: ncnn-1.0.20220721-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for ncnn-1.0.20220721-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 3f6720501fe8809eb4c063c5d734a19f455f664dc691fc444b085d70e5634219
MD5 ebf68d5da5a76e41823c0c2f3e1cfe21
BLAKE2b-256 70dd7112326721b7ba2a7e2da617fe9203ef44153ac1e36fb15db0c4ced7bd94

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8eb679e014b9ead44fed547edeaf16517dddbca5da1e41700e150d0e2b9a1d37
MD5 bc0948d3a0b0747ac52ffb1ef76aded1
BLAKE2b-256 6cc4a4b3d26d3fa93ea919816ce9e87deb9defc53dc448279f136974f1c0c6af

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp310-cp310-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp310-cp310-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 ad7ac7a8af0f1f9a3447fd545cd83dce7c8c96ac3791b8e6e83f9791f0c2e9c1
MD5 8140a1bcf5dbd7883fb11702e0a6914d
BLAKE2b-256 48aba4ac5e53691e97a2982372ab375a503a42428d518566599bf6799f8791dd

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp310-cp310-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp310-cp310-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 624be2260de324622a13a91da2af2e685292a91fbc11fd5da26f8ce46c533b90
MD5 ca04b72452afe33f66efd8f01914b2c9
BLAKE2b-256 84198a21a1a7a5c596289ed7b19dc185cec5ee6c27ec67a6c85a867f06ed0e6f

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 367f8dd16dfd7d440ed45b5bcc7d13afa3db24cbfdfccf0728ca7be32db1b0ca
MD5 514e32fd64fb4e5f68fa95f677cd8408
BLAKE2b-256 9f3fcc39df6f17f83e2dcbb88c85103633481a8f72a1a9dc1ac3f6fa84f551af

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 a7ddb784c18ff5bcaaf56cc15bf31867cb9a67c8f3ee4f602c02350c4c4bd39e
MD5 cab93adf711914ee51b8551fbbdbb9c9
BLAKE2b-256 4d919d94de4424c171e60927c02908e87a378a3d5abe900372201dbff2e90ace

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d5e47211558be33d25b939dded563a11fd3d31279b418981923e2e4a0c06eb4d
MD5 ebbb3ba1aa8aab73d2bf3461c874e051
BLAKE2b-256 f8cb0e5b2170c2b4cf550457e6540a096c4349c9a40251d2d782d67da3c356d7

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 fc7ebce2d54623457e7d54f1f16cc7967cde155f8b75d00074ec081dc8fca176
MD5 8dd9d8de407f9643558bf09c0b856ad7
BLAKE2b-256 581609d063cdbbebcc36c57a3c4a5468af3bffdbdd48d33ca5b674e60e04d9c3

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 291ad9d1aa744ec2e93216c9b6dd1814cef600e89e9f35933a5f463e85d25632
MD5 4896fec5529bc748edf201f5bc0355e2
BLAKE2b-256 d7f5820c47f183fd3601f14b4c475d8b3d270a251ccdf1ee57475e54d475fa5a

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d9a330ee4b9ce6d02c1c54d91ec9331732a44e6ab6caeb0ecc154b2f73d761d6
MD5 815c68aa8a84d8ffb93c6c82273bb023
BLAKE2b-256 07b56bf9315e4fc1d98708d82fd958fa6674a53b4782d3b92e50e5c1cc5310a4

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9116b2a3ab5a60bce8d5252a4d8b8f597fc776f8d46494a445af8b587ac007cc
MD5 316623ccdb1c4644ad354a6efb4e6d14
BLAKE2b-256 ec8ade9f161144e44710b89fc1f4884034bf20b044b196ec574feaecf04aa1ed

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 83401b17261ad45671736917ea9ad451147caddd9712cf3d76168c156888d7ce
MD5 f8c531f29044db5369f4af4046b8f3d0
BLAKE2b-256 05dcc0e2071f73a32c728d56a3b00b7b446733f1cad5c8a469b018e14f79d6a8

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp39-cp39-win32.whl.

File metadata

  • Download URL: ncnn-1.0.20220721-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for ncnn-1.0.20220721-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 c97d60d019707342f3f95772c5852c0264db8502a9502cfaa79aa709880cb415
MD5 1fc9d67d1c3096e1184902ba8e3d2178
BLAKE2b-256 f592e3449f69ba58c51d111b69ce1245dc94aafd9cb1de5c3fdbdcc100e10d20

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c14dba16bb2c408d3d1b1689dea6ec79ad8dfdd5a467af6fe08e7fdf7b1dd95e
MD5 9ba1ab4a3c843090ab3afeeb4a45a5e7
BLAKE2b-256 a1d61fb583ec84918260288e4dfbefe74a86055458e64cc65062682cf8755361

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp39-cp39-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp39-cp39-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 687daa251146551dc14dfb5e091c4091c95878d058bdcbbafd4cd94df989fc91
MD5 0dfbede724964014e7f369aefd7041f1
BLAKE2b-256 75b55a633c62b5ec5c4d76abfd666783772b67f307e895049084bd4e253c0310

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp39-cp39-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp39-cp39-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 fbd1356be8929618497ac2317906f404fa62fe8f4b8be659d655c571db4def2d
MD5 cbcabbd9b115a9f3e519e41799858f80
BLAKE2b-256 31acae207090872c97ae1ca530e13e62027c6f24c692ff69912694049d7576ba

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 2b1c484230792f90105c7a4f330001a5116df59598682762035b7e7c10f97ea3
MD5 08c7a4755916e599a6d51892d8f2559b
BLAKE2b-256 886eba20ef08e3c7ff26ff4173141efa76432a5f3a1d2bd20bc53c7712473b0e

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 dd45ffb8eb42286907c8b6f78430a51123739aa6ef35e6ec25432ca3cda70dde
MD5 53a5e1e027e7179004f07d6ce83001d7
BLAKE2b-256 331a25e458c5922ba8119a11c8b11048a3aa9277b594bef349fee77429285953

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cf630cbe2ae390a7d05b90fc13a28c4f38f49c73e0086d78093e20e406d64d30
MD5 9fde28c6e9eed4203e55d47aa53acfc3
BLAKE2b-256 590fc8a333cea7ae7d1204160f5a556028577ed3b5d681f85df8b186d43ee60c

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 d676a6c4177ce0c94edb01d22fa23c82ebd96354baa24e8f3de4603986d6bec7
MD5 9e6c9ed81d09c0b6087cada8fdfdf268
BLAKE2b-256 7e811c9894aa88f3adde9dbd78d6dea1430d242ace089c378f0ba583bfa58df9

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 709e8453b8ab1113c5a2978e641f397d63c098db6c927156a5679e5adc4e14f2
MD5 605aaf2ab0a488aed8a358dcdada68d3
BLAKE2b-256 8d7f6a4a2b4e05be0d19d4eee7ed95ef128f581503a3a3612e7f7fae5b292dd1

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8647382642fd42cd8b570a043da61a3097abc0909aba54fe307b1f0982bae71e
MD5 d4a9020a7fc0b15839bb325caee78a04
BLAKE2b-256 c9df0b7359213ec1b8db063e52ccfb559644f0c5d16a1c8cc9da87701662a172

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f42dbbc543374dc00e6da1b049f40073e8656e0dc8e77b6387f976f3bff1e615
MD5 fc33874cd5862d139af7ed1a1bf92551
BLAKE2b-256 3cc9de5aa0a04eb1a6b788ba4bef9118cf43a29b3de80f658e77496c919b6178

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 2c9803269b1aed9c1a1c55d1c3be2eb1c9ace38db3c31d7bb63a2767e16b6d9d
MD5 f0789de8e9b3bd56aa6e84f67fcce093
BLAKE2b-256 f8ccf8d98cbce3bc995a8d665ef8d8ae0124002147a9452b91b062915fe0a017

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp38-cp38-win32.whl.

File metadata

  • Download URL: ncnn-1.0.20220721-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for ncnn-1.0.20220721-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 4eb87a62f0ce35f4707d872052ef47d2835e8929dd2a736eaf44206e2a59188d
MD5 e32ee9e499c6ce618bbb22c21ea9d504
BLAKE2b-256 708ed1b4efe5c4fdc09ee89b0a067aa29cc8bbaec759c1e2b00533858006fc8d

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9bbd25198c9d897d750234ee44ee631286a8a2fa8cbc34fe55e34f7ba07df6cc
MD5 7e07821e4f478ca4fa371361880d8327
BLAKE2b-256 af1c48d91f6ce4d021665a99cfda5199aee1c914e4cfab3d6aa122e4db46f061

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp38-cp38-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp38-cp38-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 3b7f11e0a02594a91eaecf5125b6436ae22b9c36a2f5d82a39939f042083c1a1
MD5 f6946a249e9c4174ba71feb3c0db555e
BLAKE2b-256 6aae2f736d5eacaa9efb90fbe72d12b1bc6b518a76f40548190e3348c8976767

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp38-cp38-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp38-cp38-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 a8d3b15ae0eb1ca8eca44ff7d95d75a3ab99df194b6c4732d16bb234bf188260
MD5 b14be120b5841035edb34f1ca399f474
BLAKE2b-256 28c9944a97a02d46f9cab62a3a487ff2939f52db59ffcd904d3b177e5f05df2e

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 f9d19a03bf85ac0cdee07161b2b6ce1c08096d7a93239eb510e0301a9a7ec65b
MD5 9ece49bda602513da98827a23b6f9a61
BLAKE2b-256 a5631025936a2384f45070d5a405a56455763960bb09acc8bcc071d59f27c1e1

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 9a785cc07cb61dcb6bc7664b3dd9bea846ef37f339b8f31f223f404a2ac92ab0
MD5 50ffa4df8c988bec02ebb17db29dd487
BLAKE2b-256 228c5b5af0faadd15e6c3ad793413fc4e84d22d73d7dc9ee9e6925b128024c90

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 64f743dd87c17797d59fcc870058a020b7449647d4cd7e9c30ab41b1a2bec768
MD5 c4a5936fea2b3f610428aae35995db4e
BLAKE2b-256 b1b50a612c904a67468b7af204f0fd61e0bde4d1216dc51569ab33bf1104730c

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 f0ae1d48273069a0339378b82ef5dafc18456bf2360a0d2bd079435b827268b4
MD5 ceb4f0d1a45765e9a6cc458462085077
BLAKE2b-256 8571c316e665932ecce2a5900b868cc1874a5f416e4cc423975fd4d154d70896

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 d72a82c98a8470543d599a9f28053fb1345e2b078ae0e227b817f3451120df8d
MD5 16bde980ee315737a102c84891fdf1d6
BLAKE2b-256 2b17af9c1926a5ba6c7dc7e564cfc94e189e0ad613c3e7ef0a583d01c6f43d4a

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5938f055cf8db1bd909976d6acdf8baae94ae28202027ac6147ec39e4102f2c9
MD5 af1a56b4fd62791bead553bfb450c23d
BLAKE2b-256 03e76d5a6be285156f59395b5fe6815378c65d8bed2cf2c952931f173968dfbf

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e346d15f4a30a0da0db2ffd88ffe49286ce3df03148a8fd16a50b16aaf1baef2
MD5 dcdf745b191d7d9f12d999f9bb38fb8f
BLAKE2b-256 2951b66a3b8fbdac8e81bb9dc4c25b03abb6dd1954245444c5d642167c84c5e6

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 5f0be96e7b31a7728904b767e54640e5669881c95f00b675d1b231526b1b1bf9
MD5 a7bcffb5cdfad9b46b523a71f59fa3e7
BLAKE2b-256 277817bb1db7a0c223b4932470db3f8686e00d77d558898dde28b0a5041b58c2

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp37-cp37m-win32.whl.

File metadata

  • Download URL: ncnn-1.0.20220721-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for ncnn-1.0.20220721-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 5465a3a9a804bea05f686d224d7978abbe8d1d579ca43199268a925033616643
MD5 7b80154f92a5a30d15d6dced1748b7a3
BLAKE2b-256 9d550aa9bb3dc6d65efefe6a3f6a280fd82afb72d2c9715c37ee57c3add5c83c

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ea62429e9a28e1aa439497d3cc616f7090f53e5c2610bd20e0ccfed4f278fc18
MD5 4fd2c434e39066c64290bf3644c36934
BLAKE2b-256 c8100a343c3f4573fcd9e0e1866e1d968bd1399c178fd0144ff5db98cc821b7e

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp37-cp37m-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp37-cp37m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 2fb1ce9eac46e1b0cd72104ef67460af0add8a182e0399718625fb31b300bf4d
MD5 69fef6f2d1bed6e223f0e8c77cc837bd
BLAKE2b-256 cef5bae3f0f9581360979fd7f0063e9ddb0478518e8ad4488bfe3eeef5994795

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp37-cp37m-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp37-cp37m-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 5eec81ef5469adef5a823ff33ab7bdd0cfcb6af0d58b400fdad6af2fe6fe433f
MD5 4499897ee07dedbacd4b4999a4bc3eb1
BLAKE2b-256 c2c3a3efee60d0263c81fd6c445c27082b2d2ef2765dac2bcd98e1c282c1f7a0

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 e9c2942cb9d4d4d8e2e2821f94843e726aed3cdc6b450fa2b90aeb300bc30522
MD5 e26e2932f779d3fb393d438779ab5498
BLAKE2b-256 2cc18b06812c7bad14e47a85852c2169c67b0e42e68073421bff41a11b6130e6

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 7ede9d05dc13a36ad38dedd46dd5dfaf2679cecfa4e0c01c6fa8c398679815a4
MD5 07dfb59164e6bad7fb400b6625cb3363
BLAKE2b-256 8ffeac77717b9fb65c56c4f9be136c61eabea94537b25e85fd5e53f1fa667589

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1d8210f609fae7e8c231ac060a710e9a065bacede0a6a2c850a889f521927c51
MD5 908a3727b6d3101298a2f36445bc8c94
BLAKE2b-256 4d81d8f71118322d9baba3aa1d09e0ef4bfc396d16e97726421c133df64374f7

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 cfbb8fbec606d2605e71ed853a5184235d530501135212dfe96a3b90aa98cd30
MD5 7bef5462b3b0c2533954b3dd29a5dbc0
BLAKE2b-256 78130d7b2c72b0cc224373d9fdc9ba2bd3cedf2503d6ffd581b98b23b4f85d11

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 2cee69673e0c58f6d70fb6a13eac98ef72fbdd2a6b0ee5e1032de067c6493c61
MD5 1023cacda0bacf584d860014931ebba1
BLAKE2b-256 a6616f44ad287a0d23b27b364492c455ada43eb6ac362fa3319046cda8603e28

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 39114cdcfad53344300ea1b73b30fb0e82d82996a52d6db49f3ccadfbffc8d09
MD5 e53b2e989fbc0f688edcead438da6a13
BLAKE2b-256 68c4c7cc2d9c6f1610cb6a1b68a29599494257946fb36c7ac33e86a2428b7b96

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7a64fb8b93753f91c7f73626a3ae94b42973d0a198ec4539a8a1ff84921709ad
MD5 922dd26a87cb7dbd463bee63b0d08993
BLAKE2b-256 f271a36be9e1b23d439833f067098e9ff41ac35587bb574181f0cde25e39e346

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 42b1c96d18f0ab91fd08923b6cec17f83dd8a81260e7bfc4c3239ff1d8e4adfd
MD5 60cd13411cc6d04ff625dbed5b8674c0
BLAKE2b-256 f04b3c458e130d55a0c977e09767f24f8489e0f11c05606b12d88384f7e386af

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp36-cp36m-win32.whl.

File metadata

  • Download URL: ncnn-1.0.20220721-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for ncnn-1.0.20220721-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 5740d1233d8ff10488c80c2e0f6a80558ba8c22cadf4b792260173bf1992101e
MD5 413ce779a21d6b8f986417db8c9cf84e
BLAKE2b-256 2aeb25582c71008ea40eebe1b6f07ba22abd1eb1c8289f17f0d728bc09f98084

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 db1ed902abc4cc3637dde92b228d1702e3f70cbbb29aeea529dc8d6f0e64c011
MD5 e79042a8c317f8a42f20090e4109ef31
BLAKE2b-256 b5752edf711faff09f39f158b052d0823ff31d357c6050433043a7a01a2b3608

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp36-cp36m-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp36-cp36m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 e929387b11d3c691dcb47b9ee2288256fe64e18471a64fa08cddea728d10bb86
MD5 a7b026d97f9174b3311022f321313d55
BLAKE2b-256 d2de9dd06292fde1586a7cb125c45281c8afd57d23d6a27513563d3d04b217a9

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp36-cp36m-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp36-cp36m-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 11740a581c4e6a91ab2f9ecd1c5f87a7130f6df57214f8c02bd643913bc61b05
MD5 d71bf0d459e2a4fb0806c07404007fe3
BLAKE2b-256 35921d5319ff69b883144c90e0f9680fcc26b78599f5d918a8e54247c96b8e26

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 ffa09b080197e112c80d0590d36597e262835afba031998729626e93bed33121
MD5 1d400bcfe6d58288d5318b769ccf5b43
BLAKE2b-256 fd3ea37c9c0a438f8820a75ee1905ff0f3f1cb3447b7499235120eb2040210b4

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp36-cp36m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp36-cp36m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 6ff697e877578b9b17ecd2cec09ff157e42f445ef5d44dc066df2f90f7b9beb1
MD5 eee605c3ecad6a1bfd773edc40d1c056
BLAKE2b-256 426c3e4172870fb51651d9c3e92da75726288495b469b0d41a74e682bf824548

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2596cc156081cd667db8b1a066210f1e8cd860ee6c2c6e2c2ab2b8a07e755f10
MD5 b4c6e2e0c96aa9d334d16d90d0dcaaeb
BLAKE2b-256 a073daa04b47567f7d9d25a4f43209ef8da452f1f50b2e29ee13a71243e2940a

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 044dd8645ce7bd8998d79c4e8786edd68de5a18fc43dffd3610a2312d6e3818c
MD5 9a47a581a3a853b7c792c7df607de31a
BLAKE2b-256 6d00e204234e5c3a02547463b4fb3e30d2d044b190d745503c217f15133f51fe

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 3d97a547610e9222d8de1883b378752466e778ff232bd3a77ef58582bf433502
MD5 ea6c14016965b96d44235fc31d144acb
BLAKE2b-256 5a07bd63d106369a52e227821f8eeae55def78e9e1dbe4c3eaa58496c8e0ac06

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2b266e6b2b7245d22ded6a228737674e94a3286c0856e5350a8af58211e99b6a
MD5 5027bd9cb03af1179cbd94d2f4df1822
BLAKE2b-256 09e53b070e2526daba5f98a0fab883a08788a0a5a7ebb3ec50b650342c96253b

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220721-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220721-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a20ff29fd67550e0de5b6ce2e671d5ed63d87803b45807a479ed3c584456ba9d
MD5 f418508dc7cb5471da7a40b52b032351
BLAKE2b-256 a4159e65332e3712b96f7d8addefb49f3bfb6dd4cd3cc1e35406ebdf09bdf664

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page