Skip to main content

A ncnn quantization aware training tool on pytorch.

Project description

ncnnqat

ncnnqat is a quantize aware training package for NCNN on pytorch.

Table of Contents

Installation

  • Supported Platforms: Linux

  • Accelerators and GPUs: NVIDIA GPUs via CUDA driver 10.1.

  • Dependencies:

    • python >= 3.5, < 4
    • pytorch >= 1.6
    • numpy >= 1.18.1
    • onnx >= 1.7.0
    • onnx-simplifier >= 0.3.5
  • Install ncnnqat via pypi:

    $ pip install ncnnqat
    
  • or Install ncnnqat via repo:

    $ git clone https://github.com/ChenShisen/ncnnqat
    $ cd ncnnqat
    $ make install
    

Usage

  • merge bn weight into conv and freeze bn

    suggest finetuning from a well-trained model, register_quantization_hook and merge_freeze_bn at beginning. do it after a few epochs of training otherwise.

    from ncnnqat import quant_dequant_weight, unquant_weight, merge_freeze_bn, register_quantization_hook
    ...
    ...
        for epoch in range(epoch_train):
      	  model.train()
      	  if epoch==well_epoch:
      		  register_quantization_hook(model)
      	  if epoch>=well_epoch:
      		  model = merge_freeze_bn(model)  #it will change bn to eval() mode during training
    ...
    
  • Unquantize weight before update it

    ...
    ...
        model.apply(unquant_weight)  # using original weight while updating
        optimizer.step()
    ...
    
  • Save weight and save ncnn quantize table after train

    ...
    ...
        onnx_path = "./xxx/model.onnx"
        table_path="./xxx/model.table"
        dummy_input = torch.randn(1, 3, img_size, img_size, device='cuda')
        input_names = [ "input" ]
        output_names = [ "fc" ]
        torch.onnx.export(model, dummy_input, onnx_path, verbose=False, input_names=input_names, output_names=output_names)
        save_table(model,onnx_path=onnx_path,table=table_path)
    
    ...
    

    if use "model = nn.DataParallel(model)",pytorch unsupport torch.onnx.export,you should save state_dict first and prepare a new model with one gpu,then you will export onnx model.

    ...
    ...
        model_s = new_net() #
        model_s.cuda()
        register_quantization_hook(model_s)
        #model_s = merge_freeze_bn(model_s)
        onnx_path = "./xxx/model.onnx"
        table_path="./xxx/model.table"
        dummy_input = torch.randn(1, 3, img_size, img_size, device='cuda')
        input_names = [ "input" ]
        output_names = [ "fc" ]
        model_s.load_state_dict({k.replace('module.',''):v for k,v in model.state_dict().items()}) #model_s = model     model = nn.DataParallel(model)
              
        torch.onnx.export(model_s, dummy_input, onnx_path, verbose=False, input_names=input_names, output_names=output_names)
        save_table(model_s,onnx_path=onnx_path,table=table_path)
        
    
    ...
    
  • Using EMA with caution(Not recommended).

Code Examples

Cifar10 quantization aware training example.

python test/test_cifar10.py

Results

  • Cifar10

    result:

    net fp32(onnx) ncnnqat ncnn aciq ncnn kl
    mobilenet_v2 0.91 0.9066 0.9033 0.9066
    resnet18 0.94 0.93333 0.9367 0.937
  • coco

    ....

Todo

....

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ncnnqat-0.1.0.tar.gz (8.0 kB view details)

Uploaded Source

File details

Details for the file ncnnqat-0.1.0.tar.gz.

File metadata

  • Download URL: ncnnqat-0.1.0.tar.gz
  • Upload date:
  • Size: 8.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.6.3

File hashes

Hashes for ncnnqat-0.1.0.tar.gz
Algorithm Hash digest
SHA256 20d43dfede591af11879315149c754c07adf909cc0fa0ad0715a2a02f8d27069
MD5 f2bd91860a5b669205647b19c5949a16
BLAKE2b-256 dd19329076cc242fb8db173c519dd0b15f0c446b6fcd592f86a222866cf08320

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page