A ncnn quantization aware training tool on pytorch.
Project description
ncnnqat
ncnnqat is a quantize aware training package for NCNN on pytorch.
Table of Contents
Installation
-
Supported Platforms: Linux
-
Accelerators and GPUs: NVIDIA GPUs via CUDA driver 10.1.
-
Dependencies:
- python >= 3.5, < 4
- pytorch >= 1.6
- numpy >= 1.18.1
- onnx >= 1.7.0
- onnx-simplifier >= 0.3.5
-
Install ncnnqat via pypi:
$ pip install ncnnqat
-
or Install ncnnqat via repo:
$ git clone https://github.com/ChenShisen/ncnnqat $ cd ncnnqat $ make install
Usage
-
merge bn weight into conv and freeze bn
suggest finetuning from a well-trained model, register_quantization_hook and merge_freeze_bn at beginning. do it after a few epochs of training otherwise.
from ncnnqat import quant_dequant_weight, unquant_weight, merge_freeze_bn, register_quantization_hook ... ... for epoch in range(epoch_train): model.train() if epoch==well_epoch: register_quantization_hook(model) if epoch>=well_epoch: model = merge_freeze_bn(model) #it will change bn to eval() mode during training ...
-
Unquantize weight before update it
... ... model.apply(unquant_weight) # using original weight while updating optimizer.step() ...
-
Save weight and save ncnn quantize table after train
... ... onnx_path = "./xxx/model.onnx" table_path="./xxx/model.table" dummy_input = torch.randn(1, 3, img_size, img_size, device='cuda') input_names = [ "input" ] output_names = [ "fc" ] torch.onnx.export(model, dummy_input, onnx_path, verbose=False, input_names=input_names, output_names=output_names) save_table(model,onnx_path=onnx_path,table=table_path) ...
if use "model = nn.DataParallel(model)",pytorch unsupport torch.onnx.export,you should save state_dict first and prepare a new model with one gpu,then you will export onnx model.
... ... model_s = new_net() # model_s.cuda() register_quantization_hook(model_s) #model_s = merge_freeze_bn(model_s) onnx_path = "./xxx/model.onnx" table_path="./xxx/model.table" dummy_input = torch.randn(1, 3, img_size, img_size, device='cuda') input_names = [ "input" ] output_names = [ "fc" ] model_s.load_state_dict({k.replace('module.',''):v for k,v in model.state_dict().items()}) #model_s = model model = nn.DataParallel(model) torch.onnx.export(model_s, dummy_input, onnx_path, verbose=False, input_names=input_names, output_names=output_names) save_table(model_s,onnx_path=onnx_path,table=table_path) ...
-
Using EMA with caution(Not recommended).
Code Examples
Cifar10 quantization aware training example.
python test/test_cifar10.py
Results
-
Cifar10
result:
net fp32(onnx) ncnnqat ncnn aciq ncnn kl mobilenet_v2 0.91 0.9066 0.9033 0.9066 resnet18 0.94 0.93333 0.9367 0.937 -
coco
....
Todo
....
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file ncnnqat-0.1.0.tar.gz
.
File metadata
- Download URL: ncnnqat-0.1.0.tar.gz
- Upload date:
- Size: 8.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.6.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 20d43dfede591af11879315149c754c07adf909cc0fa0ad0715a2a02f8d27069 |
|
MD5 | f2bd91860a5b669205647b19c5949a16 |
|
BLAKE2b-256 | dd19329076cc242fb8db173c519dd0b15f0c446b6fcd592f86a222866cf08320 |