Skip to main content

No project description provided

Project description

NCUT

🌐Documentation | 🤗HuggingFace Demo

NCUT: Nyström Normalized Cut

Normalized Cut, aka. spectral clustering, is a graphical method to analyze data grouping in the affinity eigenvector space. It has been widely used for unsupervised segmentation in the 2000s.

Nyström Normalized Cut, is a new approximation algorithm developed for large-scale graph cuts, a large-graph of million nodes can be processed in under 10s (cpu) or 2s (gpu).


Installation & Quick Start

PyPI install, our package is based on PyTorch, please install PyTorch first

pip install ncut-pytorch

Minimal example on how to run NCUT:

import torch
from ncut_pytorch import NCUT, rgb_from_tsne_3d

model_features = torch.rand(20, 64, 64, 768)  # (B, H, W, C)

inp = model_features.reshape(-1, 768)  # flatten
eigvectors, eigvalues = NCUT(num_eig=100, device='cuda:0').fit_transform(inp)
tsne_x3d, tsne_rgb = rgb_from_tsne_3d(eigvectors, device='cuda:0')

eigvectors = eigvectors.reshape(20, 64, 64, 100)  # (B, H, W, num_eig)
tsne_rgb = tsne_rgb.reshape(20, 64, 64, 3)  # (B, H, W, 3)

We have implemented some backbone models, they can be used as feature extractors, Here is a list of available models:

from ncut_pytorch.backbone import list_models
print(list_models())
[
  'SAM2(sam2_hiera_t)', 'SAM2(sam2_hiera_s)', 'SAM2(sam2_hiera_b+)', 'SAM2(sam2_hiera_l)', 
  'SAM(sam_vit_b)', 'SAM(sam_vit_l)', 'SAM(sam_vit_h)', 'MobileSAM(TinyViT)', 
  'DiNOv2reg(dinov2_vits14_reg)', 'DiNOv2reg(dinov2_vitb14_reg)', 'DiNOv2reg(dinov2_vitl14_reg)', 'DiNOv2reg(dinov2_vitg14_reg)', 
  'DiNOv2(dinov2_vits14)', 'DiNOv2(dinov2_vitb14)', 'DiNOv2(dinov2_vitl14)', 'DiNOv2(dinov2_vitg14)', 
  'DiNO(dino_vitb8)', 'DiNO(dino_vits8)', 'DiNO(dino_vitb16)', 'DiNO(dino_vits16)', 
  'CLIP(ViT-B-16/openai)', 'CLIP(ViT-B-16/laion2b_s34b_b88k)', 'CLIP(eva02_base_patch14_448/mim_in22k_ft_in1k)', 'CLIP(convnext_base_w_320/laion_aesthetic_s13b_b82k)', 
  'MAE(vit_base)', 'ImageNet(vit_base)'
]

A example that run with a real backbone model:

import torch
from ncut_pytorch import NCUT, rgb_from_tsne_3d
from ncut_pytorch.backbone import load_model, extract_features

model = load_model(model_name="SAM(sam_vit_b)")
images = torch.rand(20, 1024, 1024, 3)
model_features = extract_features(images, model, node_type='attn', layer=6)
# model_features = model(images)['attn'][6]  # this also works

inp = model_features.reshape(-1, 768)  # flatten
eigvectors, eigvalues = NCUT(num_eig=100, device='cuda:0').fit_transform(inp)
tsne_x3d, tsne_rgb = rgb_from_tsne_3d(eigvectors, device='cuda:0')

eigvectors = eigvectors.reshape(20, 64, 64, 100)  # (B, H, W, num_eig)
tsne_rgb = tsne_rgb.reshape(20, 64, 64, 3)  # (B, H, W, 3)

paper in prep, Yang 2024

AlignedCut: Visual Concepts Discovery on Brain-Guided Universal Feature Space, Huzheng Yang, James Gee*, Jianbo Shi*,2024

Normalized Cuts and Image Segmentation, Jianbo Shi and Jitendra Malik, 2000

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ncut_pytorch-1.2.0.tar.gz (20.6 kB view details)

Uploaded Source

Built Distribution

ncut_pytorch-1.2.0-py3-none-any.whl (20.2 kB view details)

Uploaded Python 3

File details

Details for the file ncut_pytorch-1.2.0.tar.gz.

File metadata

  • Download URL: ncut_pytorch-1.2.0.tar.gz
  • Upload date:
  • Size: 20.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.16

File hashes

Hashes for ncut_pytorch-1.2.0.tar.gz
Algorithm Hash digest
SHA256 e507d25341bf86eebfae026d70da3d6585d59d084d7a309d2955adc441ad4115
MD5 95db5f3cfc4f8f8bba70fa4bf67abc58
BLAKE2b-256 6e665235c7ecf2384879b83d59276678438567e367a4db01e7df899ddb606626

See more details on using hashes here.

File details

Details for the file ncut_pytorch-1.2.0-py3-none-any.whl.

File metadata

  • Download URL: ncut_pytorch-1.2.0-py3-none-any.whl
  • Upload date:
  • Size: 20.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.16

File hashes

Hashes for ncut_pytorch-1.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 70facd92adf0ee693aa82ff4c2103d79adb964a27b34860ddc99b352b0972c48
MD5 8843a084a26ddb0bd23084906952f40e
BLAKE2b-256 2e402a0358adec37647e505550780d2408e976b638d7bc97fa18bdbd32d161de

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page