Skip to main content

No project description provided

Project description

NCUT

🌐Documentation | 🤗HuggingFace Demo

NCUT: Nyström Normalized Cut

Normalized Cut, aka. spectral clustering, is a graphical method to analyze data grouping in the affinity eigenvector space. It has been widely used for unsupervised segmentation in the 2000s.

Nyström Normalized Cut, is a new approximation algorithm developed for large-scale graph cuts, a large-graph of million nodes can be processed in under 10s (cpu) or 2s (gpu).


Installation & Quick Start

PyPI install, our package is based on PyTorch, please install PyTorch first

pip install ncut-pytorch

Minimal example on how to run NCUT:

import torch
from ncut_pytorch import NCUT, rgb_from_tsne_3d

model_features = torch.rand(20, 64, 64, 768)  # (B, H, W, C)

inp = model_features.reshape(-1, 768)  # flatten
eigvectors, eigvalues = NCUT(num_eig=100, device='cuda:0').fit_transform(inp)
tsne_x3d, tsne_rgb = rgb_from_tsne_3d(eigvectors, device='cuda:0')

eigvectors = eigvectors.reshape(20, 64, 64, 100)  # (B, H, W, num_eig)
tsne_rgb = tsne_rgb.reshape(20, 64, 64, 3)  # (B, H, W, 3)

Load Feature Extractor Model

We have implemented some backbone models, they can be used as feature extractors, Here is a list of available models:

from ncut_pytorch.backbone import list_models
print(list_models())
[
  'SAM2(sam2_hiera_t)', 'SAM2(sam2_hiera_s)', 'SAM2(sam2_hiera_b+)', 'SAM2(sam2_hiera_l)', 
  'SAM(sam_vit_b)', 'SAM(sam_vit_l)', 'SAM(sam_vit_h)', 'MobileSAM(TinyViT)', 
  'DiNOv2reg(dinov2_vits14_reg)', 'DiNOv2reg(dinov2_vitb14_reg)', 'DiNOv2reg(dinov2_vitl14_reg)', 'DiNOv2reg(dinov2_vitg14_reg)', 
  'DiNOv2(dinov2_vits14)', 'DiNOv2(dinov2_vitb14)', 'DiNOv2(dinov2_vitl14)', 'DiNOv2(dinov2_vitg14)', 
  'DiNO(dino_vits8_896)', 'DiNO(dino_vitb8_896)', 'DiNO(dino_vits8_672)', 'DiNO(dino_vitb8_672)', 'DiNO(dino_vits8_448)', 'DiNO(dino_vitb8_448)', 'DiNO(dino_vits16_448)', 'DiNO(dino_vitb16_448)',
  'CLIP(ViT-B-16/openai)', 'CLIP(ViT-L-14/openai)', 'CLIP(ViT-H-14/openai)', 'CLIP(ViT-B-16/laion2b_s34b_b88k)', 
  'CLIP(convnext_base_w_320/laion_aesthetic_s13b_b82k)', 'CLIP(convnext_large_d_320/laion2b_s29b_b131k_ft_soup)', 'CLIP(convnext_xxlarge/laion2b_s34b_b82k_augreg_soup)', 
  'CLIP(eva02_base_patch14_448/mim_in22k_ft_in1k)', "CLIP(eva02_large_patch14_448/mim_m38m_ft_in22k_in1k)",
  'MAE(vit_base)', 'MAE(vit_large)', 'MAE(vit_huge)', 
  'ImageNet(vit_base)'
]

Image model example:

import torch
from ncut_pytorch import NCUT, rgb_from_tsne_3d
from ncut_pytorch.backbone import load_model, extract_features

model = load_model(model_name="SAM(sam_vit_b)")
images = torch.rand(20, 3, 1024, 1024)
model_features = extract_features(images, model, node_type='attn', layer=6)
# model_features = model(images)['attn'][6]  # this also works

inp = model_features.reshape(-1, 768)  # flatten
eigvectors, eigvalues = NCUT(num_eig=100, device='cuda:0').fit_transform(inp)
tsne_x3d, tsne_rgb = rgb_from_tsne_3d(eigvectors, device='cuda:0')

eigvectors = eigvectors.reshape(20, 64, 64, 100)  # (B, H, W, num_eig)
tsne_rgb = tsne_rgb.reshape(20, 64, 64, 3)  # (B, H, W, 3)

Text model example:

import os
from ncut_pytorch import NCUT, rgb_from_tsne_3d
from ncut_pytorch.backbone_text import load_model

os.environ['HF_ACCESS_TOKEN'] = "your_huggingface_token"
llama = load_model("meta-llama/Meta-Llama-3.1-8B").cuda()
output_dict = llama("The quick white fox jumps over the lazy cat.")

model_features = output_dict['block'][31].squeeze(0)  # 32nd block output
token_texts = output_dict['token_texts']
eigvectors, eigvalues = NCUT(num_eig=5, device='cuda:0').fit_transform(model_features)
tsne_x3d, tsne_rgb = rgb_from_tsne_3d(eigvectors, device='cuda:0')
# eigvectors.shape[0] == tsne_rgb.shape[0] == len(token_texts)

paper in prep, Yang 2024

AlignedCut: Visual Concepts Discovery on Brain-Guided Universal Feature Space, Huzheng Yang, James Gee*, Jianbo Shi*,2024

Normalized Cuts and Image Segmentation, Jianbo Shi and Jitendra Malik, 2000

Project details


Release history Release notifications | RSS feed

This version

1.3.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ncut_pytorch-1.3.0.tar.gz (26.0 kB view details)

Uploaded Source

Built Distribution

ncut_pytorch-1.3.0-py3-none-any.whl (25.5 kB view details)

Uploaded Python 3

File details

Details for the file ncut_pytorch-1.3.0.tar.gz.

File metadata

  • Download URL: ncut_pytorch-1.3.0.tar.gz
  • Upload date:
  • Size: 26.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.16

File hashes

Hashes for ncut_pytorch-1.3.0.tar.gz
Algorithm Hash digest
SHA256 5a8fed5a6f9a8e9b1d28ab4424068d52609299090ebff1da3e698746ff366183
MD5 0f9de76bb86dcef76f705f7fcf0c7317
BLAKE2b-256 99939a640af397f196e72d394e4f6a10469e2efa270867b8a6030a74c94afeab

See more details on using hashes here.

File details

Details for the file ncut_pytorch-1.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for ncut_pytorch-1.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 87458f46bee999ec80dd95800bfc3288dad21e072773690a6f4f7465bc1d6357
MD5 b44a731d68f5c83cef6b6a4a2be46295
BLAKE2b-256 7eeef8fa3666abdd122d56ba01b81bda4eec5c38fc4add137ea72b6c5dc71a56

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page