Skip to main content

No project description provided

Project description

NCUT

🌐Documentation | 🤗HuggingFace Demo

NCUT: Nyström Normalized Cut

Normalized Cut, aka. spectral clustering, is a graphical method to analyze data grouping in the affinity eigenvector space. It has been widely used for unsupervised segmentation in the 2000s.

Nyström Normalized Cut, is a new approximation algorithm developed for large-scale graph cuts, a large-graph of million nodes can be processed in under 10s (cpu) or 2s (gpu).


Installation

1. Install PyTorch

conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia

2. Install ncut-pytorch

pip install ncut-pytorch

Trouble Shooting

In case of pip install failed, please try install the build dependencies

Option A:

sudo apt-get update && sudo apt-get install build-essential cargo rustc -y

Option B:

conda install rust -c conda-forge

Option C:

curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh && . "$HOME/.cargo/env"

Quick Start

Minimal example on how to run NCUT:

import torch
from ncut_pytorch import NCUT, rgb_from_tsne_3d

model_features = torch.rand(20, 64, 64, 768)  # (B, H, W, C)

inp = model_features.reshape(-1, 768)  # flatten
eigvectors, eigvalues = NCUT(num_eig=100, device='cuda:0').fit_transform(inp)
tsne_x3d, tsne_rgb = rgb_from_tsne_3d(eigvectors, device='cuda:0')

eigvectors = eigvectors.reshape(20, 64, 64, 100)  # (B, H, W, num_eig)
tsne_rgb = tsne_rgb.reshape(20, 64, 64, 3)  # (B, H, W, 3)

Load Feature Extractor Model

Any backbone model works as plug-in feature extractor. We have implemented some backbone models, here is a list of available models:

from ncut_pytorch.backbone import list_models
print(list_models())
[
  'SAM2(sam2_hiera_t)', 'SAM2(sam2_hiera_s)', 'SAM2(sam2_hiera_b+)', 'SAM2(sam2_hiera_l)', 
  'SAM(sam_vit_b)', 'SAM(sam_vit_l)', 'SAM(sam_vit_h)', 'MobileSAM(TinyViT)', 
  'DiNOv2reg(dinov2_vits14_reg)', 'DiNOv2reg(dinov2_vitb14_reg)', 'DiNOv2reg(dinov2_vitl14_reg)', 'DiNOv2reg(dinov2_vitg14_reg)', 
  'DiNOv2(dinov2_vits14)', 'DiNOv2(dinov2_vitb14)', 'DiNOv2(dinov2_vitl14)', 'DiNOv2(dinov2_vitg14)', 
  'DiNO(dino_vits8_896)', 'DiNO(dino_vitb8_896)', 'DiNO(dino_vits8_672)', 'DiNO(dino_vitb8_672)', 'DiNO(dino_vits8_448)', 'DiNO(dino_vitb8_448)', 'DiNO(dino_vits16_448)', 'DiNO(dino_vitb16_448)',
  'Diffusion(stabilityai/stable-diffusion-2)', 'Diffusion(CompVis/stable-diffusion-v1-4)', 'Diffusion(stabilityai/stable-diffusion-3-medium-diffusers)',
  'CLIP(ViT-B-16/openai)', 'CLIP(ViT-L-14/openai)', 'CLIP(ViT-H-14/openai)', 'CLIP(ViT-B-16/laion2b_s34b_b88k)', 
  'CLIP(convnext_base_w_320/laion_aesthetic_s13b_b82k)', 'CLIP(convnext_large_d_320/laion2b_s29b_b131k_ft_soup)', 'CLIP(convnext_xxlarge/laion2b_s34b_b82k_augreg_soup)', 
  'CLIP(eva02_base_patch14_448/mim_in22k_ft_in1k)', "CLIP(eva02_large_patch14_448/mim_m38m_ft_in22k_in1k)",
  'MAE(vit_base)', 'MAE(vit_large)', 'MAE(vit_huge)', 
  'ImageNet(vit_base)'
]

Image model example:

import torch
from ncut_pytorch import NCUT, rgb_from_tsne_3d
from ncut_pytorch.backbone import load_model, extract_features

model = load_model(model_name="SAM(sam_vit_b)")
images = torch.rand(20, 3, 1024, 1024)
model_features = extract_features(images, model, node_type='attn', layer=6)
# model_features = model(images)['attn'][6]  # this also works

inp = model_features.reshape(-1, 768)  # flatten
eigvectors, eigvalues = NCUT(num_eig=100, device='cuda:0').fit_transform(inp)
tsne_x3d, tsne_rgb = rgb_from_tsne_3d(eigvectors, device='cuda:0')

eigvectors = eigvectors.reshape(20, 64, 64, 100)  # (B, H, W, num_eig)
tsne_rgb = tsne_rgb.reshape(20, 64, 64, 3)  # (B, H, W, 3)

Text model example:

import os
from ncut_pytorch import NCUT, rgb_from_tsne_3d
from ncut_pytorch.backbone_text import load_text_model

os.environ['HF_ACCESS_TOKEN'] = "your_huggingface_token"
llama = load_text_model("meta-llama/Meta-Llama-3.1-8B").cuda()
output_dict = llama("The quick white fox jumps over the lazy cat.")

model_features = output_dict['block'][31].squeeze(0)  # 32nd block output
token_texts = output_dict['token_texts']
eigvectors, eigvalues = NCUT(num_eig=5, device='cuda:0').fit_transform(model_features)
tsne_x3d, tsne_rgb = rgb_from_tsne_3d(eigvectors, device='cuda:0')
# eigvectors.shape[0] == tsne_rgb.shape[0] == len(token_texts)

paper in prep, Yang 2024

AlignedCut: Visual Concepts Discovery on Brain-Guided Universal Feature Space, Huzheng Yang, James Gee*, Jianbo Shi*,2024

Normalized Cuts and Image Segmentation, Jianbo Shi and Jitendra Malik, 2000

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ncut_pytorch-1.6.11.tar.gz (32.1 kB view details)

Uploaded Source

Built Distribution

ncut_pytorch-1.6.11-py3-none-any.whl (31.4 kB view details)

Uploaded Python 3

File details

Details for the file ncut_pytorch-1.6.11.tar.gz.

File metadata

  • Download URL: ncut_pytorch-1.6.11.tar.gz
  • Upload date:
  • Size: 32.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.16

File hashes

Hashes for ncut_pytorch-1.6.11.tar.gz
Algorithm Hash digest
SHA256 3cfb8d53713de1662b7711ab8a6b2f8a44a24b8d3bced7a00ed76653a25b9c70
MD5 2e6399d831c7cd5102618d331f5dc13e
BLAKE2b-256 063e6d85cd69514b6eed62f97c7130aca74d902736679dd6201ba6c575baced1

See more details on using hashes here.

File details

Details for the file ncut_pytorch-1.6.11-py3-none-any.whl.

File metadata

File hashes

Hashes for ncut_pytorch-1.6.11-py3-none-any.whl
Algorithm Hash digest
SHA256 8e304dac1e12a64546a11d37c6b5bf55b24ebdb9e6b2cb1fe9998f248e59a0a8
MD5 ab201c6d5643f2765be04495fa44f6fc
BLAKE2b-256 15e0471b6eaeb97765165806a91f2972af8edd29fc6f8767b4d4a591c1cea809

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page