Skip to main content

No project description provided

Project description

NCUT

🌐Documentation | 🤗HuggingFace Demo

NCUT: Nyström Normalized Cut

Normalized Cut, aka. spectral clustering, is a graphical method to analyze data grouping in the affinity eigenvector space. It has been widely used for unsupervised segmentation in the 2000s.

Nyström Normalized Cut, is a new approximation algorithm developed for large-scale graph cuts, a large-graph of million nodes can be processed in under 10s (cpu) or 2s (gpu).


Installation

1. Install PyTorch

conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia

2. Install ncut-pytorch

pip install ncut-pytorch

Trouble Shooting

In case of pip install failed, please try install the build dependencies

Option A:

sudo apt-get update && sudo apt-get install build-essential cargo rustc -y

Option B:

conda install rust -c conda-forge

Option C:

curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh && . "$HOME/.cargo/env"

Quick Start

Minimal example on how to run NCUT:

import torch
from ncut_pytorch import NCUT, rgb_from_tsne_3d

model_features = torch.rand(20, 64, 64, 768)  # (B, H, W, C)

inp = model_features.reshape(-1, 768)  # flatten
eigvectors, eigvalues = NCUT(num_eig=100, device='cuda:0').fit_transform(inp)
tsne_x3d, tsne_rgb = rgb_from_tsne_3d(eigvectors, device='cuda:0')

eigvectors = eigvectors.reshape(20, 64, 64, 100)  # (B, H, W, num_eig)
tsne_rgb = tsne_rgb.reshape(20, 64, 64, 3)  # (B, H, W, 3)

Load Feature Extractor Model

Any backbone model works as plug-in feature extractor. We have implemented some backbone models, here is a list of available models:

from ncut_pytorch.backbone import list_models
print(list_models())
[
  'SAM2(sam2_hiera_t)', 'SAM2(sam2_hiera_s)', 'SAM2(sam2_hiera_b+)', 'SAM2(sam2_hiera_l)', 
  'SAM(sam_vit_b)', 'SAM(sam_vit_l)', 'SAM(sam_vit_h)', 'MobileSAM(TinyViT)', 
  'DiNOv2reg(dinov2_vits14_reg)', 'DiNOv2reg(dinov2_vitb14_reg)', 'DiNOv2reg(dinov2_vitl14_reg)', 'DiNOv2reg(dinov2_vitg14_reg)', 
  'DiNOv2(dinov2_vits14)', 'DiNOv2(dinov2_vitb14)', 'DiNOv2(dinov2_vitl14)', 'DiNOv2(dinov2_vitg14)', 
  'DiNO(dino_vits8_896)', 'DiNO(dino_vitb8_896)', 'DiNO(dino_vits8_672)', 'DiNO(dino_vitb8_672)', 'DiNO(dino_vits8_448)', 'DiNO(dino_vitb8_448)', 'DiNO(dino_vits16_448)', 'DiNO(dino_vitb16_448)',
  'Diffusion(stabilityai/stable-diffusion-2)', 'Diffusion(CompVis/stable-diffusion-v1-4)', 'Diffusion(stabilityai/stable-diffusion-3-medium-diffusers)',
  'CLIP(ViT-B-16/openai)', 'CLIP(ViT-L-14/openai)', 'CLIP(ViT-H-14/openai)', 'CLIP(ViT-B-16/laion2b_s34b_b88k)', 
  'CLIP(convnext_base_w_320/laion_aesthetic_s13b_b82k)', 'CLIP(convnext_large_d_320/laion2b_s29b_b131k_ft_soup)', 'CLIP(convnext_xxlarge/laion2b_s34b_b82k_augreg_soup)', 
  'CLIP(eva02_base_patch14_448/mim_in22k_ft_in1k)', "CLIP(eva02_large_patch14_448/mim_m38m_ft_in22k_in1k)",
  'MAE(vit_base)', 'MAE(vit_large)', 'MAE(vit_huge)', 
  'ImageNet(vit_base)'
]

Image model example:

import torch
from ncut_pytorch import NCUT, rgb_from_tsne_3d
from ncut_pytorch.backbone import load_model, extract_features

model = load_model(model_name="SAM(sam_vit_b)")
images = torch.rand(20, 3, 1024, 1024)
model_features = extract_features(images, model, node_type='attn', layer=6)
# model_features = model(images)['attn'][6]  # this also works

inp = model_features.reshape(-1, 768)  # flatten
eigvectors, eigvalues = NCUT(num_eig=100, device='cuda:0').fit_transform(inp)
tsne_x3d, tsne_rgb = rgb_from_tsne_3d(eigvectors, device='cuda:0')

eigvectors = eigvectors.reshape(20, 64, 64, 100)  # (B, H, W, num_eig)
tsne_rgb = tsne_rgb.reshape(20, 64, 64, 3)  # (B, H, W, 3)

Text model example:

import os
from ncut_pytorch import NCUT, rgb_from_tsne_3d
from ncut_pytorch.backbone_text import load_text_model

os.environ['HF_ACCESS_TOKEN'] = "your_huggingface_token"
llama = load_text_model("meta-llama/Meta-Llama-3.1-8B").cuda()
output_dict = llama("The quick white fox jumps over the lazy cat.")

model_features = output_dict['block'][31].squeeze(0)  # 32nd block output
token_texts = output_dict['token_texts']
eigvectors, eigvalues = NCUT(num_eig=5, device='cuda:0').fit_transform(model_features)
tsne_x3d, tsne_rgb = rgb_from_tsne_3d(eigvectors, device='cuda:0')
# eigvectors.shape[0] == tsne_rgb.shape[0] == len(token_texts)

paper in prep, Yang 2024

AlignedCut: Visual Concepts Discovery on Brain-Guided Universal Feature Space, Huzheng Yang, James Gee*, Jianbo Shi*,2024

Normalized Cuts and Image Segmentation, Jianbo Shi and Jitendra Malik, 2000

Project details


Release history Release notifications | RSS feed

This version

1.8.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ncut_pytorch-1.8.1.tar.gz (34.5 kB view details)

Uploaded Source

Built Distribution

ncut_pytorch-1.8.1-py3-none-any.whl (35.9 kB view details)

Uploaded Python 3

File details

Details for the file ncut_pytorch-1.8.1.tar.gz.

File metadata

  • Download URL: ncut_pytorch-1.8.1.tar.gz
  • Upload date:
  • Size: 34.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.16

File hashes

Hashes for ncut_pytorch-1.8.1.tar.gz
Algorithm Hash digest
SHA256 ef76ce49e096684f839a123ecad19b1646ae1f10c92b3dbc9281d2bc70aed95c
MD5 226941736e5f28531a4de141f1ad9716
BLAKE2b-256 2bfef6f66c7a7f986eae6754f45daeedcf097bd537d52c27a398b6f19862e27a

See more details on using hashes here.

File details

Details for the file ncut_pytorch-1.8.1-py3-none-any.whl.

File metadata

File hashes

Hashes for ncut_pytorch-1.8.1-py3-none-any.whl
Algorithm Hash digest
SHA256 8b06db3fdb8fa383ad9e389e3f1fb54c69bdd6efa552a52624a99086ab482750
MD5 32c88a44b9d3d786f452490412f602ba
BLAKE2b-256 2754804c04dfd76897d15857f86dd3778baa33034b64b2f31d27799a83d464b2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page