Skip to main content

Scikit-learn compatible implementation of nonconvex sparse estimators for single- and multi-task linear regressions (e.g. SCAD, MCP, l1-group-SCAD, etc).

Project description

ncvx-sparse

ncvx-sparse is a Python library for learning high-dimensional linear regresion models (single- and -multi-task) with nonconvex sparsity (e.g. SCAD, MCP, l1-group SCAD). Solvers are written in Cython and implementation follows the Scikit-learn API.

Why imposing sparsity with nonconvex penalties (e.g. LASSO) ? Because…

Currently, the ncvx-sparse solves the following problems:

  1. Single-task linear regression,

\arg \min_{\beta \in \mathbb{R}^p} \frac{1}{2n} \sum_i (y_i - x_i^{\top} \beta)^2 + \lambda \rho P(\beta) + \frac{1-\rho}{2} ||\beta||_2^2

where P stands for:

  • SCAD (SCADnet estimator), with parameter $gamma > 2$.

  1. Multi-task linear regression,

\arg \min_{\beta = (\beta_1 \dots \beta_k) \in \mathbb{R}^{K \times p}} \frac{1}{2} \sum_j^K \sum_i^n (y_{ik} - x_{ik}^{\top} \beta_j)^2

where P stands for:

  • SCAD-l1 i.e. SCAD on the l1-norm of p-th feature vector accross the K tasks,

  • SCAD-l2, same as SCAD-l1 but with respect to the l2-norm (not squared).

Install the released version

Create a Python=3.6 environment (e.g. Anaconda), and install ncvx-sparse from pip. with the following command line in your Anaconda prompt:

pip install -U ncvx-sparse

Example

References

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ncvx-sparse-0.0.1.dev2.tar.gz (194.4 kB view details)

Uploaded Source

Built Distributions

ncvx_sparse-0.0.1.dev2-cp39-cp39-win_amd64.whl (113.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

ncvx_sparse-0.0.1.dev2-cp36-cp36m-win_amd64.whl (124.1 kB view details)

Uploaded CPython 3.6m Windows x86-64

File details

Details for the file ncvx-sparse-0.0.1.dev2.tar.gz.

File metadata

  • Download URL: ncvx-sparse-0.0.1.dev2.tar.gz
  • Upload date:
  • Size: 194.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.0.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.6.13

File hashes

Hashes for ncvx-sparse-0.0.1.dev2.tar.gz
Algorithm Hash digest
SHA256 e712f7b5c0560d96947ae506ae2e43fdb67f8cb2d29be970265192cdc536c221
MD5 fbf38ddd1f738793672aab068c81a151
BLAKE2b-256 8d1d6d8734931972608bdeb7a8ed008c1617838445eb88e21e87b30f28350d22

See more details on using hashes here.

File details

Details for the file ncvx_sparse-0.0.1.dev2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: ncvx_sparse-0.0.1.dev2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 113.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.0.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.6.13

File hashes

Hashes for ncvx_sparse-0.0.1.dev2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 18de2515bff41c11caa32be699b3d2b0684873c1cc4a1131a1522caa0aa99f0e
MD5 42f48713154e73fafcacc81d8ee32d59
BLAKE2b-256 d7b154190568b0bf81b9aa4e911b500e384be29b032b4ce2a5a04fade85f864d

See more details on using hashes here.

File details

Details for the file ncvx_sparse-0.0.1.dev2-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: ncvx_sparse-0.0.1.dev2-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 124.1 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.0.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.6.13

File hashes

Hashes for ncvx_sparse-0.0.1.dev2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 ba005130df9c69d4435fe994fa7bf7f0d10b1ad64f266ec1a457481fb5d23669
MD5 d8ff84fbd02c5fc5dc99386ad5035812
BLAKE2b-256 3f840c309d9099732e194710238ee08fadcc90ff12e1a5ee9a8b685e1b01725b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page