Scikit-learn compatible implementation of nonconvex sparse estimators for single- and multi-task linear regressions (e.g. SCAD, MCP, l1-group-SCAD, etc).
Project description
ncvx-sparse
ncvx-sparse is a Python library for learning high-dimensional linear regresion models (single- and -multi-task) with nonconvex sparsity (e.g. SCAD, MCP, l1-group SCAD). Solvers are written in Cython and implementation follows the Scikit-learn API.
Why imposing sparsity with nonconvex penalties (e.g. LASSO) ? Because…
Currently, the ncvx-sparse solves the following problems:
Single-task linear regression,
\arg \min_{\beta \in \mathbb{R}^p} \frac{1}{2n} \sum_i (y_i - x_i^{\top} \beta)^2 + \lambda \rho P(\beta) + \frac{1-\rho}{2} ||\beta||_2^2
where P stands for:
SCAD (SCADnet estimator), with parameter $gamma > 2$.
Multi-task linear regression,
\arg \min_{\beta = (\beta_1 \dots \beta_k) \in \mathbb{R}^{K \times p}} \frac{1}{2} \sum_j^K \sum_i^n (y_{ik} - x_{ik}^{\top} \beta_j)^2
where P stands for:
SCAD-l1 i.e. SCAD on the l1-norm of p-th feature vector accross the K tasks,
SCAD-l2, same as SCAD-l1 but with respect to the l2-norm (not squared).
Install the released version
Create a Python=3.6 environment (e.g. Anaconda), and install ncvx-sparse from pip. with the following command line in your Anaconda prompt:
pip install -U ncvx-sparse
Example
References
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
File details
Details for the file ncvx-sparse-0.0.1.dev2.tar.gz
.
File metadata
- Download URL: ncvx-sparse-0.0.1.dev2.tar.gz
- Upload date:
- Size: 194.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.0.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.6.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e712f7b5c0560d96947ae506ae2e43fdb67f8cb2d29be970265192cdc536c221 |
|
MD5 | fbf38ddd1f738793672aab068c81a151 |
|
BLAKE2b-256 | 8d1d6d8734931972608bdeb7a8ed008c1617838445eb88e21e87b30f28350d22 |
File details
Details for the file ncvx_sparse-0.0.1.dev2-cp39-cp39-win_amd64.whl
.
File metadata
- Download URL: ncvx_sparse-0.0.1.dev2-cp39-cp39-win_amd64.whl
- Upload date:
- Size: 113.0 kB
- Tags: CPython 3.9, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.0.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.6.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 18de2515bff41c11caa32be699b3d2b0684873c1cc4a1131a1522caa0aa99f0e |
|
MD5 | 42f48713154e73fafcacc81d8ee32d59 |
|
BLAKE2b-256 | d7b154190568b0bf81b9aa4e911b500e384be29b032b4ce2a5a04fade85f864d |
File details
Details for the file ncvx_sparse-0.0.1.dev2-cp36-cp36m-win_amd64.whl
.
File metadata
- Download URL: ncvx_sparse-0.0.1.dev2-cp36-cp36m-win_amd64.whl
- Upload date:
- Size: 124.1 kB
- Tags: CPython 3.6m, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.0.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.6.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ba005130df9c69d4435fe994fa7bf7f0d10b1ad64f266ec1a457481fb5d23669 |
|
MD5 | d8ff84fbd02c5fc5dc99386ad5035812 |
|
BLAKE2b-256 | 3f840c309d9099732e194710238ee08fadcc90ff12e1a5ee9a8b685e1b01725b |