Skip to main content

Neural Network lib for ncxlib

Project description

NCxLib: A Lightweight Neural Network Library in Python

ncxlib is a lightweight and easy-to-use neural network library built in Python. It provides a simple API for constructing and training neural networks, along with tools for data preprocessing and generation.

Features

  • Modular Design: Easily build custom neural networks by combining different layers, activation functions, and loss functions.
  • Data Handling: Includes data loaders for CSV and image data, with preprocessing capabilities like scaling and grayscaling.
  • Training and Evaluation: Train your networks with various optimization algorithms and evaluate their performance.
  • Extensible: Add your own custom layers, activations, and loss functions to expand the library's functionality.

Installation

pip install ncxlib

Getting Started

Here's a quick example of how to use ncxlib to create and train a simple neural network:

# External imporst
import numpy as np

# Util imports
from ncxlib import generators, dataloaders
from ncxlib.util import train_test_split

# Neural network imports
from ncxlib.neuralnetwork import optimizers, losses
from ncxlib.preprocessing import MinMaxScaler
from ncxlib.neuralnetwork import NeuralNetwork, FullyConnectedLayer
from ncxlib.neuralnetwork import activations
from ncxlib.neuralnetwork.initializers import HeNormal, Zero


# ------- Generate some data using generators -------
generators.generate_training_data(to_csv=True)

# ------- Load data from generated csv and split it into train and test -------
loader = dataloaders.CSVDataLoader("training_data.csv")
X, y = loader.get_data()
X_train, X_test, y_train, y_test = train_test_split(X, y)


# ------- Configure model layers -------
model = NeuralNetwork([
    FullyConnectedLayer(
        n_neurons=3, 
        activation=activations.ReLU, 
        optimizer=optimizers.Adam(beta_1=0.9, beta_2=0.999, epsilon=1e-07),
        name="first_hidden",
        weights_initializer=HeNormal(), 
        bias_initializer=Zero()
        ),

    FullyConnectedLayer(
        n_neurons=5, 
        activation=activations.ReLU, 
        optimizer=optimizers.SGDMomentum(momentum = 0.9), 
        name="second_hidden",
        initializer=HeNormal(),
        ),

    FullyConnectedLayer(
        n_neurons=2, 
        activation=activations.Sigmoid, 
        optimizer=optimizers.RMSProp(decay_rate = 0.8)
        )
],
    loss_fn=losses.BinaryCrossEntropy
)

# ------- Train model and evaluate accuracy -------
model.train(X_train, y_train, epochs=20, learning_rate=0.01)
model.evaluate(X_test, y_test)

Contributing

Thank you for your interest in contributing to the ncxlib library for Neural Network development. We are thrilled you are considering contributing to our project.

How to Contribute

  • Take a look at the list of immediate contributions needed listed under the issues
  • Look for areas around the repository with comments marked #TODO. If you find one, feel free to create an issue and get approval before starting the work.
  • Any suggestions or feedback - please create an issue.
  • Open a Pull Request with your issue and the team will review and approve/deny or provide comments on the PR.

License

This project is licensed under the MIT License

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ncxlib-0.2.7.tar.gz (20.3 kB view details)

Uploaded Source

Built Distribution

ncxlib-0.2.7-py3-none-any.whl (35.4 kB view details)

Uploaded Python 3

File details

Details for the file ncxlib-0.2.7.tar.gz.

File metadata

  • Download URL: ncxlib-0.2.7.tar.gz
  • Upload date:
  • Size: 20.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.4 CPython/3.12.4 Darwin/23.5.0

File hashes

Hashes for ncxlib-0.2.7.tar.gz
Algorithm Hash digest
SHA256 9f4639d9a28660ac10fcc4ec3577a6f27d709fc444e0096565b3f8130af058e9
MD5 9de0a846b8be8e61d92d5e9e5b19432e
BLAKE2b-256 582157e9685c2d8e38ccb1dcaa400dde914d51766038069482590cdb2afe6ee3

See more details on using hashes here.

File details

Details for the file ncxlib-0.2.7-py3-none-any.whl.

File metadata

  • Download URL: ncxlib-0.2.7-py3-none-any.whl
  • Upload date:
  • Size: 35.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.4 CPython/3.12.4 Darwin/23.5.0

File hashes

Hashes for ncxlib-0.2.7-py3-none-any.whl
Algorithm Hash digest
SHA256 411f5bf9ecdf56d5dcfeb35444c1a80c227383e6816ce0a0385893917e95b0d3
MD5 7b42b18e43f283bb0642f8ad984c1db4
BLAKE2b-256 c0026175256bc020568a6b04e8180050b51911f033e4aea12f76adb85b51c8ce

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page