Skip to main content

Neural Network lib for ncxlib

Project description

NCxLib: A Lightweight Neural Network Library in Python

ncxlib is a lightweight and easy-to-use neural network library built in Python. It provides a simple API for constructing and training neural networks, along with tools for data preprocessing and generation.

Features

  • Modular Design: Easily build custom neural networks by combining different layers, activation functions, and loss functions.
  • Data Handling: Includes data loaders for CSV and image data, with preprocessing capabilities like scaling and grayscaling.
  • Training and Evaluation: Train your networks with various optimization algorithms and evaluate their performance.
  • Extensible: Add your own custom layers, activations, and loss functions to expand the library's functionality.

Installation

pip install ncxlib

Getting Started

Here's a quick example of how to use ncxlib to create and train a simple neural network:

# External imporst
import numpy as np

# Util imports
from ncxlib import generators, dataloaders
from ncxlib.util import train_test_split

# Neural network imports
from ncxlib.neuralnetwork import optimizers, losses
from ncxlib.preprocessing import MinMaxScaler
from ncxlib.neuralnetwork import NeuralNetwork, FullyConnectedLayer
from ncxlib.neuralnetwork import activations
from ncxlib.neuralnetwork.initializers import HeNormal, Zero


# ------- Generate some data using generators -------
generators.generate_training_data(to_csv=True)

# ------- Load data from generated csv and split it into train and test -------
loader = dataloaders.CSVDataLoader("training_data.csv")
X, y = loader.get_data()
X_train, X_test, y_train, y_test = train_test_split(X, y)


# ------- Configure model layers -------
model = NeuralNetwork([
    FullyConnectedLayer(
        n_neurons=3, 
        activation=activations.ReLU, 
        optimizer=optimizers.Adam(beta_1=0.9, beta_2=0.999, epsilon=1e-07),
        name="first_hidden",
        weights_initializer=HeNormal(), 
        bias_initializer=Zero()
        ),

    FullyConnectedLayer(
        n_neurons=5, 
        activation=activations.ReLU, 
        optimizer=optimizers.SGDMomentum(momentum = 0.9), 
        name="second_hidden",
        initializer=HeNormal(),
        ),

    FullyConnectedLayer(
        n_neurons=2, 
        activation=activations.Sigmoid, 
        optimizer=optimizers.RMSProp(decay_rate = 0.8)
        )
],
    loss_fn=losses.BinaryCrossEntropy
)

# ------- Train model and evaluate accuracy -------
model.train(X_train, y_train, epochs=20, learning_rate=0.01)
model.evaluate(X_test, y_test)

Contributing

Thank you for your interest in contributing to the ncxlib library for Neural Network development. We are thrilled you are considering contributing to our project.

How to Contribute

  • Take a look at the list of immediate contributions needed listed under the issues
  • Look for areas around the repository with comments marked #TODO. If you find one, feel free to create an issue and get approval before starting the work.
  • Any suggestions or feedback - please create an issue.
  • Open a Pull Request with your issue and the team will review and approve/deny or provide comments on the PR.

License

This project is licensed under the MIT License

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ncxlib-0.2.5.tar.gz (19.1 kB view details)

Uploaded Source

Built Distribution

ncxlib-0.2.5-py3-none-any.whl (33.5 kB view details)

Uploaded Python 3

File details

Details for the file ncxlib-0.2.5.tar.gz.

File metadata

  • Download URL: ncxlib-0.2.5.tar.gz
  • Upload date:
  • Size: 19.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.4 CPython/3.12.4 Darwin/23.5.0

File hashes

Hashes for ncxlib-0.2.5.tar.gz
Algorithm Hash digest
SHA256 e84e995746461799d1e556ad53ec9b51f435ff4e7d7947d54a33d3415e1fe3ed
MD5 4f6193ebf74f1ae297a713e559053cd5
BLAKE2b-256 35387334d64a2eb09aaec576b4999f443a862a6bdd88923d21f6ce4b577a2e5d

See more details on using hashes here.

File details

Details for the file ncxlib-0.2.5-py3-none-any.whl.

File metadata

  • Download URL: ncxlib-0.2.5-py3-none-any.whl
  • Upload date:
  • Size: 33.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.4 CPython/3.12.4 Darwin/23.5.0

File hashes

Hashes for ncxlib-0.2.5-py3-none-any.whl
Algorithm Hash digest
SHA256 784a5a48ff2db51507629444bfd07304c9d20e28b0809101dcffe2d08f415f9c
MD5 8b934e24af09c912de959094b178d665
BLAKE2b-256 4153b1c7964afdfc829647767763301405722ea1b57fc7d1f1b69b1671631c28

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page