Skip to main content

A collection of cython-optimized search functions for NumPy

Project description

ndfind

pypi python pytest Code style: black License

A collection of three cython-optimized search functions for NumPy. When the required value is found, they return immediately, without scanning the whole array. It can result in 1000x or larger speedups for huge arrays if the value is located close to the the beginning of the array.

Installation:

pip install ndfind

Contents

Basic usage:

  • find(a, v) finds v in a, returns index of the first match or -1 if not found
  • first_above(a, v) finds first element in a that is strictly greater than v, returns its index or -1 if not found
  • first_nonzero(a) finds the first nonzero element in a, returns its index or -1 if not found

Advanced usage:

  • find(a, v, rtol=1e-05, atol=1e-08, sorted=False, missing=-1, raises=False) Returns the index of the first element in a equal to v. If either a or v (or both) is of floating type, the parameters atol (absolute tolerance) and rtol (relative tolerance) are used for comparison (see np.isclose() for details).

    Otherwise, returns the missing value (-1 by default) or raises a ValueError if raises=True.

    For example,

    >>> find([3, 1, 4, 1, 5], 4)
    2
    >>> find([1, 2, 3], 7)
    -1
    >>> find([1.1, 1.2, 1.3], 1.2)
    1
    >>> find(np.arange(0, 1, 0.1), 0.3) 
    3
    >>> find([[3, 8, 4], [5, 2, 7]], 7)
    (1, 2)
    >>> find([[3, 8, 4], [5, 2, 7]], 9)
    -1
    >>> find([999980., 999990., 1e6], 1e6)
    1
    >>> find([999980., 999990., 1e6], 1e6, rtol=1e-9)
    2
  • first_above(a, v, sorted=False, missing=-1, raises=False) Returns the index of the first element in a strictly greater than v. If either a or v (or both) is of floating type, the parameters atol (absolute tolerance) and rtol (relative tolerance) are used for comparison (see np.isclose() for details).

    In 2D and above the the values in a are always tested and returned in row-major, C-style order.

    If there is no value in a greater than v, returns the default value (-1 by default) or raises a ValueError if raises=True.

    sorted, use binary search to speed things up (works only if the array is sorted)

    For example,

    >>> first_above([4, 5, 8, 2, 7], 6)
    2 
    >>> first_above([[4, 5, 8], [2, 7, 3]], 6)
    (0, 2) 
    >>> first_above([5, 6, 7], 9)
    3 
  • first_nonzero(a, missing=-1, raises=False) Returns the index of the first nonzero element in a.

    In 2D and above the the values in a are always tested and returned in row-major, C-style order.

    For example,

>>> first_nonzero([0, 0, 7, 0, 5])
2
>>> first_nonzero([False, True, False, False, True])
1
>>> first_nonzero([[0, 0, 0, 0], [0, 0, 5, 3]])
(1, 2)

Testing

Run pytest in the project root.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ndfind-0.4.1.tar.gz (300.8 kB view details)

Uploaded Source

Built Distributions

ndfind-0.4.1-cp311-cp311-win_amd64.whl (284.0 kB view details)

Uploaded CPython 3.11 Windows x86-64

ndfind-0.4.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

ndfind-0.4.1-cp311-cp311-macosx_10_9_x86_64.whl (429.1 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

ndfind-0.4.1-cp310-cp310-win_amd64.whl (283.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

ndfind-0.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

ndfind-0.4.1-cp310-cp310-macosx_10_9_x86_64.whl (431.4 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

ndfind-0.4.1-cp39-cp39-win_amd64.whl (290.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

ndfind-0.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

ndfind-0.4.1-cp39-cp39-macosx_10_9_x86_64.whl (439.5 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

ndfind-0.4.1-cp38-cp38-win_amd64.whl (294.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

ndfind-0.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

ndfind-0.4.1-cp38-cp38-macosx_10_9_x86_64.whl (420.6 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file ndfind-0.4.1.tar.gz.

File metadata

  • Download URL: ndfind-0.4.1.tar.gz
  • Upload date:
  • Size: 300.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for ndfind-0.4.1.tar.gz
Algorithm Hash digest
SHA256 db3ec9bbfca1a027a31d47ed8c449371e0c2e876da7a51f032e49639e91d3f49
MD5 25e1764c1979c875becd5a7d5219f7d2
BLAKE2b-256 fb94b483cdde885621c1bc8619b7e56d8cc530202be96983da930b11e1260d5e

See more details on using hashes here.

Provenance

File details

Details for the file ndfind-0.4.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: ndfind-0.4.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 284.0 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for ndfind-0.4.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 29f822c294bcb24a9802aa8616109ccda521b89874343eb890fc61f8b1e8522f
MD5 77e2da63d901a23056333c5c3e6e7692
BLAKE2b-256 bcf6f637befbddc985423ffee01ef4cf075d9ceb661841d1ca47f52cf0315458

See more details on using hashes here.

Provenance

File details

Details for the file ndfind-0.4.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ndfind-0.4.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fc41a5105bc41aa979f47bdd616f06d9f2252c4814c1a168ec8c9ebe6041b72a
MD5 341d34a225c3a2ef9c199ae2e89aa137
BLAKE2b-256 d3dfb8153fbd5169b33fd8ca40c92df3675813a8005e111c320d7db3e0dbb17d

See more details on using hashes here.

Provenance

File details

Details for the file ndfind-0.4.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ndfind-0.4.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8dbdccfc5b60c9fc41f50ea7bc34ff1c749b545808163f6598baa2c782ad6dff
MD5 46bd28d535f79f633c0bfed161387476
BLAKE2b-256 78a44fd4bdff71dd7ff4689226372fea137ad7dd66ce24c0d634aee2670a638c

See more details on using hashes here.

Provenance

File details

Details for the file ndfind-0.4.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: ndfind-0.4.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 283.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for ndfind-0.4.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 096b5019533471efe2c5309972f999e857a045dd2bf9eced8b0f1c6c4c845726
MD5 b665f8bddac75c0c5dde31abbab6227a
BLAKE2b-256 46e5c1d611d392ad4628f5087d41a53abf1d8b41abf439c4b8274d90cc731b5a

See more details on using hashes here.

Provenance

File details

Details for the file ndfind-0.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ndfind-0.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fc255c699223165b539722ec978155a77c3540400677170525febb2022dc1580
MD5 fc22391ad876ccbfb58df8d864c9006c
BLAKE2b-256 abe0d8ab4d5d73da5723aa58f6513c454b9b7cbabc68226f19ee0291a29df712

See more details on using hashes here.

Provenance

File details

Details for the file ndfind-0.4.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ndfind-0.4.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 737f352dace32c61e49d2eecdfa4c54ed2c0eff8195e52686509e8a88fa66067
MD5 b1c64cad0389ae1736c612edbd6395e4
BLAKE2b-256 8b1535bdefbe637e8f4b72b6e8ccae087bc3efbd44f9e68296d9b284f08ab04a

See more details on using hashes here.

Provenance

File details

Details for the file ndfind-0.4.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: ndfind-0.4.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 290.7 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for ndfind-0.4.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a415580b43c305c61c9ed35b849a5e1727edc206ab8ea168fb67b75177c60f93
MD5 e3ae756a803cc4527ca7925af9590814
BLAKE2b-256 e8406e49ba5aaf17a09b75b6db2e07f479de852653c5c60fe2753cbc32948533

See more details on using hashes here.

Provenance

File details

Details for the file ndfind-0.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ndfind-0.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 889e47047c275d972017460a0ce9f4975b4663fb88fb23ac76180e07687f1c0f
MD5 6723c6869d77adf869f8117147450ded
BLAKE2b-256 ebfde9846bcbf89a227cf60d4fb358a4db1843b821dc4002a0d32d2b6bffe88c

See more details on using hashes here.

Provenance

File details

Details for the file ndfind-0.4.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ndfind-0.4.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8a0df0f7b2cc110034484194638eeef860f7d450f9e53599bbf12eed190512eb
MD5 748ec5818db47da22b37a2bcecf4fd9e
BLAKE2b-256 38f67127d6492e18a2b6be41992dfaa18f3f7bc2cd382e8fb6e5d07a418520b0

See more details on using hashes here.

Provenance

File details

Details for the file ndfind-0.4.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: ndfind-0.4.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 294.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for ndfind-0.4.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b0e621d4c6ad857d548a36970e2d9ddd2cd77a5d8094adb76f56483f0df54f89
MD5 26b7587d20c3d6f6de9ba40fe9923f27
BLAKE2b-256 7135f4378432ede8d9569e4f5bf2a24484af3843dc52dff76c0ce3d2a7cdc5ed

See more details on using hashes here.

Provenance

File details

Details for the file ndfind-0.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ndfind-0.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1db561592983361aca85c88d35fc4f7a75e2d0ad5273ebe9a32cc40e23a2ef6e
MD5 fdce2e60569e640070e3c7d03d815572
BLAKE2b-256 17f7276b350f94eeae7f081189dda9dd87026bba3c1039bc54666149abcec2c4

See more details on using hashes here.

Provenance

File details

Details for the file ndfind-0.4.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ndfind-0.4.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4997a5c811487783256392a47d99408f725e6912a4f791ae6b4c9506f72c2e83
MD5 cfbb899cf36484ddbc761e1a1a8040ec
BLAKE2b-256 a79e7af2ef64be3b5d43ca0ac38ae1584bef9351c94b694e59d87d4ce22b0392

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page