Skip to main content

A small graph package used to draw image for ndnsim metrics

Project description

ndnsim-graph

A small graph package used to draw image for ndnsim metrics

1. Install

pip install ndnsimgraph

2. Usage Example

2.1 Throughput

  • 功能:

    • 绘制节点特定Face的吞吐量;=> plot
    • 绘制多个节点吞吐量之和;=> plotSum
    • 绘制多个节点吞吐量的平均值; => plotAvg
  • 基本使用:

    from ndnsimgraph.throughput import ThroughputGraph, ThroughputType, ThroughputTarget
    
    ThroughputGraph.parse("throughput.txt"). \
        setThroughputType(ThroughputType.OutData). \
        setThroughputTarget(ThroughputTarget.Kilobytes_Mbps). \
        setSamplingInterval(0.5). \
        plot("C1", 258). \
        plot("C2", 258). \
        plot("C3", 258). \
        plot("C4", 258). \
        title("1.1 Throughput base usage"). \
        xlabel("Times(s)"). \
        ylabel("Throughput(Mbps)"). \
        legend(). \
        drawAndSave("output", "throughput-1.1.svg"). \
        close()
    

    throughput-1.1

    • 可以通过 setThroughputType 设置不同的吞吐量类型,有效值如下:

      Obtaining metrics — ndnSIM documentation

      吞吐量类型 描述
      ThroughputType.InInterests 统计从该Face接收到的Interest的指标(数量、速率)
      ThroughputType.OutInterests 统计从该Face转发出去的Interest的指标(数量、速率)
      ThroughputType.InData 统计从该Face接收到的Data的指标(数量、速率)
      ThroughputType.OutData 统计从该Face转发出去的Data的指标(数量、速率)
      ThroughputType.InNacks 统计从该Face接收到的Nack的指标(数量、速率)
      ThroughputType.OutNacks 统计从该Face转发出去的Nack的指标(数量、速率)
      ThroughputType.InSatisfiedInterests 统计从该Face传入的被满足的Interest的指标(数量、速率)
      ThroughputType.InTimedOutInterests 统计从该Face传入的超时的Interest的指标(数量、速率)
      ThroughputType.OutSatisfiedInterests 统计从该Face传出的被满足的Interest的指标(数量、速率)
      ThroughputType.SatisfiedInterests 统计所有Face已满足Interest的指标(数量、速率)
      ThroughputType.TimedOutInterests 统计所有Face超时Interest的指标(数量、速率)
    • 可以通过setThroughputTarget 设置吞吐量目标值,有效值如下:

      Obtaining metrics — ndnSIM documentation

      吞吐量目标 描述
      ThroughputTarget.Packets EWMA后的包数量
      ThroughputTarget.Kilobytes_KBps EWMA后的速率(KBps)
      ThroughputTarget.Kilobytes_MBps EWMA后的速率(MBps)
      ThroughputTarget.Kilobytes_Kbps EWMA后的速率(Kbps)
      ThroughputTarget.Kilobytes_Mbps EWMA后的速率(Mbps)
      ThroughputTarget.PacketRaw 统计周期内的包数量(真实数量,没有EWMA)
      ThroughputTarget.KilobytesRaw_KBps 统计周期内的真实速率(KBps)
      ThroughputTarget.KilobytesRaw_MBps 统计周期内的真实速率(MBps)
      ThroughputTarget.KilobytesRaw_Kbps 统计周期内的真实速率(Kbps)
      ThroughputTarget.KilobytesRaw_Mbps 统计周期内的真实速率(Mbps)
    • 可以通过setSamplingInterval设置采样间隔 => 设置为1,则每秒采样一次。

    • 可以通过 plot 函数绘制节点某个Face的吞吐量 => plot 函数与 matplotlib 的plot函数一致,所有可以传递给matplotlib.plot 的参数都可以传递给 plot

      • 例如主动设置折现的样式、大小、颜色和标签等等等等

        from ndnsimgraph.throughput import ThroughputGraph, ThroughputType, ThroughputTarget
        
        ThroughputGraph.parse("throughput.txt"). \
            setThroughputType(ThroughputType.OutData). \
            setThroughputTarget(ThroughputTarget.Kilobytes_Mbps). \
            setSamplingInterval(0.5). \
            plot("C1", 258, linestyle="dotted", linewidth=4, markersize=10, marker="*", color="blue", label="custom-C1"). \
            plot("C4", 258, linewidth=1, markersize=5, marker="+", color="red", label="custom-C4"). \
            title("1.2 Custom plot"). \
            xlabel("Times(s)"). \
            ylabel("Throughput(Mbps)"). \
            legend(). \
            drawAndSave("output", "throughput-1.2.svg"). \
            close()
        

        throughput-1.2

    • 可以通过 xlimylim 函数设置横纵坐标的显示范围

      from ndnsimgraph.throughput import ThroughputGraph, ThroughputType, ThroughputTarget
      
      ThroughputGraph.parse("throughput.txt"). \
          setThroughputType(ThroughputType.OutData). \
          setThroughputTarget(ThroughputTarget.Kilobytes_Mbps). \
          setSamplingInterval(0.5). \
          plot("C1", 258, linestyle="dotted", linewidth=4, markersize=10, marker="*", color="blue"). \
          plot("C4", 258, linewidth=1, markersize=5, marker="+", color="red"). \
          ylim((0, 3)). \
          title("1.3 ylim test"). \
          xlabel("Times(s)"). \
          ylabel("Throughput(Mbps)"). \
          legend(). \
          drawAndSave("output", "throughput-1.3.svg"). \
          close()
      

      throughput-1.3

  • 使用 plotSum 实现多条折线的加和

    from ndnsimgraph.throughput import ThroughputGraph, ThroughputType, ThroughputTarget
    from ndnsimgraph.common import NodeItem
    
    ThroughputGraph.parse("throughput.txt"). \
        setThroughputType(ThroughputType.OutData). \
        setThroughputTarget(ThroughputTarget.Kilobytes_Mbps). \
        setSamplingInterval(0.5). \
        plot("C1", 258). \
        plot("C3", 258). \
        plotSum([NodeItem("C1", 258),
                 NodeItem("C3", 258),
                 ], label="sum"). \
        title("1.4 plotSum test"). \
        xlabel("Times(s)"). \
        ylabel("Throughput(Mbps)"). \
        legend(). \
        drawAndSave("output", "throughput-1.4.svg"). \
        close()
    

    throughput-1.4

  • 使用plotAvg 实现多条折线取平均

    from ndnsimgraph.throughput import ThroughputGraph, ThroughputType, ThroughputTarget
    from ndnsimgraph.common import NodeItem
    
    ThroughputGraph.parse("throughput.txt"). \
        setThroughputType(ThroughputType.OutData). \
        setThroughputTarget(ThroughputTarget.Kilobytes_Mbps). \
        setSamplingInterval(0.5). \
        plot("C1", 258). \
        plot("C3", 258). \
        plotAvg([NodeItem("C1", 258),
                 NodeItem("C3", 258),
                 ], label="avg"). \
        title("1.5 plotAvg test"). \
        xlabel("Times(s)"). \
        ylabel("Throughput(Mbps)"). \
        legend(). \
        drawAndSave("output", "throughput-1.5.svg"). \
        close()
    

    throughput-1.5

2.2 Delay

  • 功能:

    • 绘制某个Consumer的延迟;=> plot

    • 绘制多个Consumer的延迟之和;=> plotSum

    • 绘制多个Consumer的延迟的平均值; => plotAvg

  • 基本使用

    from ndnsimgraph.delay import DelayGraph, DelayType, DelayTarget
    
    DelayGraph.parse("delay.txt"). \
        setDelayType(DelayType.LastDelay). \
        setDelayTarget(DelayTarget.DelayMS). \
        setSamplingInterval(0.5). \
        plot("C1", 0). \
        plot("C2", 0). \
        plot("C3", 0). \
        plot("C4", 0). \
        title("delay-2.1"). \
        xlabel("Times(s)"). \
        ylabel("Delay(ms)"). \
        legend(). \
        drawAndSave("output", "delay-2.1.svg"). \
        close()
    

    delay-2.1

    • 可以通过 setDelayType 设置不同的吞吐量类型,有效值如下:

      Obtaining metrics — ndnSIM documentation

      延迟类型 描述
      DelayType.LastDelay LastDelay意味着DelayS和DelayUS代表最后发送的兴趣和接收的数据包之间的延迟
      DelayType.FullDelay FullDelay是指DelayS和DelayUS代表发送的第一个感兴趣的数据包和接收的数据包之间的延迟
    • 可以通过setDelayTarget设置延迟目标,有效值如下:

      延迟目标 描述
      DelayTarget.DelayS 按秒统计的延迟
      DelayTarget.DelayMS 按毫秒统计的延迟
      DelayTarget.DelayUS 按微秒统计的延迟
    • 其它函数,setSamplingIntervalplotxlimylim 等等的含义和 Throughput的一致,详情请见 2.1 节。

  • 使用 plotSum 实现多条折线的加和:

    from ndnsimgraph.delay import DelayGraph, DelayType, DelayTarget
    from ndnsimgraph.common import NodeItem
    
    DelayGraph.parse("delay.txt"). \
        setDelayType(DelayType.LastDelay). \
        setDelayTarget(DelayTarget.DelayMS). \
        setSamplingInterval(0.5). \
        plot("C1", 0). \
        plot("C4", 0). \
        plotSum([NodeItem("C1", 0),
                 NodeItem("C4", 0)], label="sum"). \
        title("2.2 delay plotSum test"). \
        xlabel("Times(s)"). \
        ylabel("Delay(ms)"). \
        legend(). \
        drawAndSave("output", "delay-2.2.svg"). \
        close()
    

    delay-2.2

  • 使用 plotAvg 实现多条折线取平均:

    from ndnsimgraph.delay import DelayGraph, DelayType, DelayTarget
    from ndnsimgraph.common import NodeItem
    
    DelayGraph.parse("delay.txt"). \
        setDelayType(DelayType.LastDelay). \
        setDelayTarget(DelayTarget.DelayMS). \
        setSamplingInterval(0.5). \
        plot("C1", 0). \
        plot("C4", 0). \
        plotAvg([NodeItem("C1", 0),
                 NodeItem("C4", 0)], label="avg"). \
        title("2.3 delay plotAvg test"). \
        xlabel("Times(s)"). \
        ylabel("Delay(ms)"). \
        legend(). \
        drawAndSave("output", "delay-2.3.svg"). \
        close()
    

    delay-2.3

2.3 Drop

from ndnsimgraph.drop import DropGraph, DropType, DropTarget

DropGraph.parse("data_content_delivery/drop_abilene.txt").
    setDropType(DropType.Drop).
    setDropTarget(DropTarget.PacketRaw).
    setSamplingInterval(1).
    innerPlot("C1").
    innerPlot("C2").
    title("test title").
    xlabel("Drop(packets)").
    ylabel("Times(s)").
    ylim(0).
    legend().
    drawAndSave("output", "test-drop.svg").
    close()

test-drop.svg

3. Upload new packet

Python 打包自己的库到 PYPI (可pip安装)

python3 setup.py sdist bdist_wheel
twine upload dist/*

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ndnsimgraph-0.2.9.tar.gz (22.1 kB view details)

Uploaded Source

Built Distribution

ndnsimgraph-0.2.9-py3-none-any.whl (24.9 kB view details)

Uploaded Python 3

File details

Details for the file ndnsimgraph-0.2.9.tar.gz.

File metadata

  • Download URL: ndnsimgraph-0.2.9.tar.gz
  • Upload date:
  • Size: 22.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.8.2 requests/2.27.1 setuptools/60.2.0 requests-toolbelt/0.9.1 tqdm/4.64.0 CPython/3.9.2

File hashes

Hashes for ndnsimgraph-0.2.9.tar.gz
Algorithm Hash digest
SHA256 1cbd3dc3b575d86428f9a979d582163d611c9faddd0826bf3ca139525a8e0583
MD5 acf0fde973d34159289d1ee11bd5699b
BLAKE2b-256 1ccf3b36c7f12eb64897007060a084d4251d715fd2fcc278be2203d094e49323

See more details on using hashes here.

File details

Details for the file ndnsimgraph-0.2.9-py3-none-any.whl.

File metadata

  • Download URL: ndnsimgraph-0.2.9-py3-none-any.whl
  • Upload date:
  • Size: 24.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.8.2 requests/2.27.1 setuptools/60.2.0 requests-toolbelt/0.9.1 tqdm/4.64.0 CPython/3.9.2

File hashes

Hashes for ndnsimgraph-0.2.9-py3-none-any.whl
Algorithm Hash digest
SHA256 661b9c18ffad8469dae29e720c8018b47567778f1201607ad716eceb4ab92784
MD5 e3dfa6b43149a365ce81918fdb3d58ec
BLAKE2b-256 dfb7f4d2ccd8afc34b780406be38cc34f4da722b2dc32cdec204c4d282a52a80

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page