Skip to main content

ONNX backed array library compliant with Array API standard.

Project description

ndonnx

CI Documentation conda-forge pypi

An ONNX-backed array library that is compliant with the Array API standard.

Installation

Releases are available on PyPI and conda-forge.

# using pip
pip install ndonnx
# using conda
conda install ndonnx
# using pixi
pixi add ndonnx

Development

You can install the package in development mode using:

git clone https://github.com/quantco/ndonnx
cd ndonnx

# For Array API tests
git submodule update --init --recursive

pixi shell
pre-commit run -a
pip install --no-build-isolation --no-deps -e .
pytest tests -n auto

Quick start

ndonnx is an ONNX based python array library.

It has a couple of key features:

  • It implements the Array API standard. Standard compliant code can be executed without changes across numerous backends such as like NumPy, JAX and now ndonnx.

    import numpy as np
    import ndonnx as ndx
    from jax.experimental import array_api as jxp
    
    def mean_drop_outliers(a, low=-5, high=5):
        xp = a.__array_namespace__()
        return xp.mean(a[(low < a) & (a < high)])
    
    np_result = mean_drop_outliers(np.asarray([-10, 0.5, 1, 5]))
    jax_result = mean_drop_outliers(jxp.asarray([-10, 0.5, 1, 5]))
    onnx_result = mean_drop_outliers(ndx.asarray([-10, 0.5, 1, 5]))
    
    assert np_result == onnx_result.to_numpy() == jax_result == 0.75
    
  • It supports ONNX export. This allows you persist your logic into an ONNX computation graph.

    import ndonnx as ndx
    import onnx
    
    # Instantiate placeholder ndonnx array
    x = ndx.array(shape=("N",), dtype=ndx.float32)
    y = mean_drop_outliers(x)
    
    # Build and save ONNX model to disk
    model = ndx.build({"x": x}, {"y": y})
    onnx.save(model, "mean_drop_outliers.onnx")
    

    You can then make predictions using a runtime of your choice.

    import onnxruntime as ort
    import numpy as np
    
    inference_session = ort.InferenceSession("mean_drop_outliers.onnx")
    prediction, = inference_session.run(None, {
        "x": np.array([-10, 0.5, 1, 5], dtype=np.float32),
    })
    assert prediction == 0.75
    

In the future we will be enabling a stable API for an extensible data type system. This will allow users to define their own data types and operations on arrays with these data types.

Array API coverage

Array API compatibility is tracked in api-coverage-tests. Missing coverage is tracked in the skips.txt file. Contributions are welcome!

Summary(1119 total):

  • 898 passed
  • 210 failed
  • 11 deselected

Run the tests with:

pixi run arrayapitests

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ndonnx-0.7.0.tar.gz (305.1 kB view details)

Uploaded Source

Built Distribution

ndonnx-0.7.0-py3-none-any.whl (51.6 kB view details)

Uploaded Python 3

File details

Details for the file ndonnx-0.7.0.tar.gz.

File metadata

  • Download URL: ndonnx-0.7.0.tar.gz
  • Upload date:
  • Size: 305.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for ndonnx-0.7.0.tar.gz
Algorithm Hash digest
SHA256 e0a46fb47de0ce29d1ebc3358b14c1c4dde10f03d782aea576c58cc590599be6
MD5 17f3dc78bf91829bb55e9b83b17fa52d
BLAKE2b-256 8734c8b8026225e01ba0e14720cd08637fa0edfb8b31b43eafcd90b9f435577d

See more details on using hashes here.

File details

Details for the file ndonnx-0.7.0-py3-none-any.whl.

File metadata

  • Download URL: ndonnx-0.7.0-py3-none-any.whl
  • Upload date:
  • Size: 51.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for ndonnx-0.7.0-py3-none-any.whl
Algorithm Hash digest
SHA256 3b6a6095dadb75845899f8f5ce9da9101fee92d90e87ec9fd6602404d5c5d304
MD5 2f930538ed49f29f60cebb4ea7c29601
BLAKE2b-256 f7bb8fa420443f54e729292d21de81c0141bd60e8a69014110c2dd98ff967d6d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page