Skip to main content

NWB extension to add acquisition module

Project description

ndx-acquisition-module

pipeline status license

python version release pypi package conda package

This extension is used to allow adding modules in nwbfile.acquisition, similarly to how nwbfile.processing allows adding modules.

More specifically, this allows creating a module that has TimeSeries and DynamicTable objects, then users can add this module.

This is in alpha development stages. Please use with discretion.

[TOC]

Requirement

The requirements and additional development requirements can be seen in pyproject.toml file.

Here are the minimum requirements:

  • python >=3.8
  • pynwb>=1.5.0,<3
  • hdmf>=3.4.7,<4

Installation

You can install via pip:

pip install ndx-acquisition-module

Or conda:

conda install -c fleischmannlab ndx-acquisition-module

Or directly from the git repository:

pip install git+https://gitlab.com/fleischmann-lab/ndx/ndx-acquisition-module

Usage

Main usage

Here's a short example to create the module, add objects into it then add to acquisition

from ndx_acquisition_module import AcquisitionModule

mod = AcquisitionModule(name="raw_mod", description="raw acq module")

# Add data objects to created AcquisitionModule
mod.add(time_series)  # add time series
mod.add(dynamic_table)  # add dynamic table

# Add AcquisitionModule to nwbfile.acquisition
nwbfile.add_acquisition(mod)

Full example

Here's a full example that you can copy and paste in a script/notebook and run. A test.nwb file would be created.

Expand to see full example script
from datetime import datetime

import numpy as np
from dateutil import tz
from hdmf.common import DynamicTable, VectorData
from ndx_acquisition_module import AcquisitionModule

from pynwb import NWBHDF5IO, NWBFile, TimeSeries

# Create an example NWBFile
nwbfile = NWBFile(
  session_description="test session description",
  identifier="unique_identifier",
  session_start_time=datetime(2012, 2, 21, tzinfo=tz.gettz("US/Pacific")),
)

# Create time series
ts = TimeSeries(
  name="choice_series",
  description="raw choice series",
  data=np.random.randint(4, size=100),
  timestamps=(np.arange(100).astype("float") + 2) / 30,
  unit="-",
)

# Create dynamic table
tbl = DynamicTable(
  name="lookup_table",
  description="lookup table for `choice_series`",
  columns=[
    VectorData(
      name="lookup_id", description="ID to look up", data=[0, 1, 2, 3]
    ),
    VectorData(
      name="lookup_name",
      description="name of ID",
      data=["water", "earth", "fire", "air"],
    ),
  ],
)

# Create AcquisitionModule to store these objects
mod = AcquisitionModule(name="raw_mod", description="raw acq module")

# Add data objects to created AcquisitionModule
mod.add(ts)  # add time series
mod.add(tbl)  # add dynamic table

# Add AcquisitionModule to nwbfile.acquisition
nwbfile.add_acquisition(mod)

# Write the file to disk
filename = "test.nwb"
with NWBHDF5IO(path=filename, mode="w") as io:
  io.write(nwbfile)

API usage notes and limitations

With package installed

Currently to use mod.get(<object_name>) or mod[<object_name>], users would also need to install this package, for example with

pip install ndx-acquisition-module

And import, using NWBHDF5IO(..., load_namespaces=True) would not be enough.

# new file completely
from pynwb import  NWBHDF5IO
from ndx_acquisition_module import AcquisitionModule
nwb = NWBHDF5IO('test.nwb', mode='r').read() # notice `load_namepsaces` is not needed

print(nwb.acquisition['raw_mod'])

which outputs:

raw_mod ndx_acquisition_module.AcquisitionModule at 0x139742592581104
Fields:
  data_interfaces: {
    choice_series <class 'pynwb.base.TimeSeries'>,
    lookup_table <class 'hdmf.common.table.DynamicTable'>
  }

To access:

nwb.acquisition['raw_mod']['lookup_table']
nwb.acquisition['raw_mod']['choice_series']

Without package installed

Otherwise, if ndx-acquisition-module is not installed, accessing the inside objects have to be done based on types:

# new file completely
from pynwb import  NWBHDF5IO
nwb = NWBHDF5IO('test.nwb', mode='r', load_namespaces=True).read() # notice `load_namepsaces` is NEEDED

print(nwb.acquisition['raw_mod'])

which outputs:

raw_mod abc.AcquisitionModule at 0x140252603705728
Fields:
  description: raw acq module
  dynamic_tables: {
    lookup_table <class 'hdmf.common.table.DynamicTable'>
  }
  nwb_data_interfaces: {
    choice_series <class 'pynwb.base.TimeSeries'>
  }

To access:

nwb.acquisition['raw_mod'].dynamic_tables['lookup_table']
nwb.acquisition['raw_mod'].nwb_data_interfaces['choice_series']

TODOs

  • Figure out how to allow consistent access even if package is not installed, so that using load_namespaces=True is sufficient.
  • Edit sphinx deploy stage
  • Publish on pypi
  • Publish on conda

This extension was created using ndx-template.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ndx-acquisition-module-0.1.2.tar.gz (16.5 kB view details)

Uploaded Source

Built Distribution

ndx_acquisition_module-0.1.2-py2.py3-none-any.whl (6.9 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file ndx-acquisition-module-0.1.2.tar.gz.

File metadata

File hashes

Hashes for ndx-acquisition-module-0.1.2.tar.gz
Algorithm Hash digest
SHA256 13ab95613dd2cc7118b8db5cc6509aafc75aa9d97b24af4854bda1e94b08fba9
MD5 9a289db7c6623464732e4f633616d1d0
BLAKE2b-256 9d0d178dd7278ed032cd4f1491197fe408df4bca5d9cda54347b68558cc6fea2

See more details on using hashes here.

Provenance

File details

Details for the file ndx_acquisition_module-0.1.2-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for ndx_acquisition_module-0.1.2-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 43bf36a111a8238e37bb2b1583f85d5e593154b72a1f1468e812db4d004fa262
MD5 5f45dad6b52466193b150f4a2482c399
BLAKE2b-256 5d8a8ede56e51ee94888e8df60e3b5b730c6f48fc196e0cb00062407e0fbb164

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page