A novel and simple framework based on prevalent DL framework and other image processing libs. v0.1.15: move merge, fill and deduct functions from toolkit to fuel.
Project description
# nebulae
### A novel and simple framework based on tf and other image processing libs.
## Modules Overview
### Fuel: easily manage and read dataset you need anytime
### Toolkit: includes many utilities for better support of nebulae
---
## Toolkit
### Build a FuelGenerator to spatial efficently store data.
- config: <**dict**> A dictionary containing all parameters.
- file_dir: <**str**> Where your raw data is.
- file_list: <**str**> A csv file in which all the raw datum file name and labels are listed.
- dst_path: <**str**> A hdf5/npz file where you want to save the compressed data.
- dtype: <**list** of **str**> A list of data types of all columns but the first one in *file_list*. Valid data types are 'uint8', 'uint16', 'uint32', 'int8', 'int16', 'int32', 'int64', 'float16', 'float32', 'float64', 'str'.
- height: <**int**, range between **(0, +∞)**> The height of image data. Defaults to 224.
- width: <**int**, range between **(0, +∞)**> The height of image data. Defaults to 224.
- channel: <**int**> The height of image data. Defaults to 1.
- encode: <**str**> The mean by which image data is encoded. 'PNG' is the way without information loss. Defaults to 'JPEG'.
### An example of file_list.csv is as follow. 'image' and 'label' are the key names of data and labels respectively.
image|label
:----|:---:
img_1.jpg|2|
img_2.jpg|0|
...|...|
img_9.jpg|5|
```
import nebulae
fg = nebulae.toolkit.FuelGenerator(file_dir='/file_dir',
file_list='file_list.csv',
dst_path='/file_dir/dst_path.hdf5',
dtype=['uint8', 'int8'],
channel=3,
height=224,
width=224,
encode='jpeg')
```
### Call generateFuel() to generate compressed data file.
```
fg.generateFuel()
```
### You can edit properties again for generating other file.
```
fg.propertyEdit(height=200, width=200)
fg.generateFuel()
```
### Passing a dictionary of changed parameters is equivalent.
```
config = {'height': 200, 'width': 200}
fg.propertyEdit(config=config)
fg.generateFuel()
```
---
## Fuel
### Build a FuelDepot that allows you to deposit datasets.
```
fd = nebulae.fuel.FuelDepot()
```
### Call loadFuel() to mount dataset on your FuelDepot.
- name: <**str**> Name of your dataset.
- batch_size: <**int**> The size of mini-batch.
- data_path: <**str**> The full path of your data file. It must be a hdf5/npz file.
- key_data: <**str**> The key name of data.
- if_shuffle: <**bool**> Whether to shuffle data samples every epoch. Defaults to True.
- height: <**int**, range between **(0, +∞)**> Height of image data. Defaults to 0.
- width: <**int**, range between **(0, +∞)**> Width of image data. Defaults to 0.
- resol_ratio: <**float**, range between **(0, 1]**> The coefficient of subsampling for lowering image data resolution. Set it as 0.5 to carry out 1/2 subsampling. Defaults to 1.
- is_seq: <**bool**> Declare whether this dataset is sequential. Defaults to False
- spatial_aug: <comma-separated **str**> Put spatial data augmentations you want in a string with comma as separator. Valid augmentations include 'flip', 'brightness', 'gamma_contrast' and 'log_contrast', e.g. 'flip,brightness'. Defaults to '' which means no augmentation.
- p_sa: <**tuple** of **float**, range between **[0, 1]**> The probabilities of taking spatial data augmentations according to the order in *spatial_aug*. Defaults to (0).
- theta_sa: <**tuple**> The parameters of spatial data augmentations according to the order in *spatial_aug*. Defaults to (0).
- temporal_aug: <comma-separated **str**> Put temporal data augmentations you want in a string with comma as separator. Valid augmentations include 'sample', e.g. 'sample'. Make sure to set *is_seq* as True if you want to enable temporal augmentation. Defaults to '' which means no augmentation.
- p_ta: <**tuple** of **float**, range between **[0, 1]**> The probabilities of taking temporal data augmentations according to the order in *temporal_aug*. Defaults to (0).
- theta_ta=(0): <**tuple**> The parameters of temporal data augmentations according to the order in *temporal_aug*. Defaults to (0).
```
fd.loadFuel(name='test-img',
batch_size=4,
key_data='image',
data_path='/Users/Seria/Desktop/nebulae/test/img/image.hdf5',
width=200, height=200,
resol_ratio=0.5,
spatial_aug='brightness,gamma_contrast',
p_sa=(0.5, 0.5), theta_sa=(0.2, 1.2))
```
### You can edit properties to change the way you fetch batch and process data.
```
fd.propertyEdit(dataname='test-img', name='test', batch_size=2)
```
### Passing a dictionary of changed parameters is equivalent.
```
config = {'name':'test', 'batch_size':2}
fd.propertyEdit(dataname='test-img', config=config)
```
### Here are three useful functions:
### stepsPerEpoch() returns how many steps you should take to iterate over all data.
### currentEpoch() returns which epoch you are currently.
### nextBatch() return a dictionary containing a batch of data, labels and other information.
### **N.B.** Sometimes you have no need to explicitly call the functions above unless you regard FuelDepot as an independent tool for your own use.
```
for s in range(fd.stepsPerEpoch('test')):
batch = fd.nextBatch('test')
print(fd.currentEpoch('test'), batch['label'])
```
### Call unloadFuel(dataname) to unmount dataset named "dataname" on your FuelDepot.
```
fd.unloadFuel(name='test')
```
### A novel and simple framework based on tf and other image processing libs.
## Modules Overview
### Fuel: easily manage and read dataset you need anytime
### Toolkit: includes many utilities for better support of nebulae
---
## Toolkit
### Build a FuelGenerator to spatial efficently store data.
- config: <**dict**> A dictionary containing all parameters.
- file_dir: <**str**> Where your raw data is.
- file_list: <**str**> A csv file in which all the raw datum file name and labels are listed.
- dst_path: <**str**> A hdf5/npz file where you want to save the compressed data.
- dtype: <**list** of **str**> A list of data types of all columns but the first one in *file_list*. Valid data types are 'uint8', 'uint16', 'uint32', 'int8', 'int16', 'int32', 'int64', 'float16', 'float32', 'float64', 'str'.
- height: <**int**, range between **(0, +∞)**> The height of image data. Defaults to 224.
- width: <**int**, range between **(0, +∞)**> The height of image data. Defaults to 224.
- channel: <**int**> The height of image data. Defaults to 1.
- encode: <**str**> The mean by which image data is encoded. 'PNG' is the way without information loss. Defaults to 'JPEG'.
### An example of file_list.csv is as follow. 'image' and 'label' are the key names of data and labels respectively.
image|label
:----|:---:
img_1.jpg|2|
img_2.jpg|0|
...|...|
img_9.jpg|5|
```
import nebulae
fg = nebulae.toolkit.FuelGenerator(file_dir='/file_dir',
file_list='file_list.csv',
dst_path='/file_dir/dst_path.hdf5',
dtype=['uint8', 'int8'],
channel=3,
height=224,
width=224,
encode='jpeg')
```
### Call generateFuel() to generate compressed data file.
```
fg.generateFuel()
```
### You can edit properties again for generating other file.
```
fg.propertyEdit(height=200, width=200)
fg.generateFuel()
```
### Passing a dictionary of changed parameters is equivalent.
```
config = {'height': 200, 'width': 200}
fg.propertyEdit(config=config)
fg.generateFuel()
```
---
## Fuel
### Build a FuelDepot that allows you to deposit datasets.
```
fd = nebulae.fuel.FuelDepot()
```
### Call loadFuel() to mount dataset on your FuelDepot.
- name: <**str**> Name of your dataset.
- batch_size: <**int**> The size of mini-batch.
- data_path: <**str**> The full path of your data file. It must be a hdf5/npz file.
- key_data: <**str**> The key name of data.
- if_shuffle: <**bool**> Whether to shuffle data samples every epoch. Defaults to True.
- height: <**int**, range between **(0, +∞)**> Height of image data. Defaults to 0.
- width: <**int**, range between **(0, +∞)**> Width of image data. Defaults to 0.
- resol_ratio: <**float**, range between **(0, 1]**> The coefficient of subsampling for lowering image data resolution. Set it as 0.5 to carry out 1/2 subsampling. Defaults to 1.
- is_seq: <**bool**> Declare whether this dataset is sequential. Defaults to False
- spatial_aug: <comma-separated **str**> Put spatial data augmentations you want in a string with comma as separator. Valid augmentations include 'flip', 'brightness', 'gamma_contrast' and 'log_contrast', e.g. 'flip,brightness'. Defaults to '' which means no augmentation.
- p_sa: <**tuple** of **float**, range between **[0, 1]**> The probabilities of taking spatial data augmentations according to the order in *spatial_aug*. Defaults to (0).
- theta_sa: <**tuple**> The parameters of spatial data augmentations according to the order in *spatial_aug*. Defaults to (0).
- temporal_aug: <comma-separated **str**> Put temporal data augmentations you want in a string with comma as separator. Valid augmentations include 'sample', e.g. 'sample'. Make sure to set *is_seq* as True if you want to enable temporal augmentation. Defaults to '' which means no augmentation.
- p_ta: <**tuple** of **float**, range between **[0, 1]**> The probabilities of taking temporal data augmentations according to the order in *temporal_aug*. Defaults to (0).
- theta_ta=(0): <**tuple**> The parameters of temporal data augmentations according to the order in *temporal_aug*. Defaults to (0).
```
fd.loadFuel(name='test-img',
batch_size=4,
key_data='image',
data_path='/Users/Seria/Desktop/nebulae/test/img/image.hdf5',
width=200, height=200,
resol_ratio=0.5,
spatial_aug='brightness,gamma_contrast',
p_sa=(0.5, 0.5), theta_sa=(0.2, 1.2))
```
### You can edit properties to change the way you fetch batch and process data.
```
fd.propertyEdit(dataname='test-img', name='test', batch_size=2)
```
### Passing a dictionary of changed parameters is equivalent.
```
config = {'name':'test', 'batch_size':2}
fd.propertyEdit(dataname='test-img', config=config)
```
### Here are three useful functions:
### stepsPerEpoch() returns how many steps you should take to iterate over all data.
### currentEpoch() returns which epoch you are currently.
### nextBatch() return a dictionary containing a batch of data, labels and other information.
### **N.B.** Sometimes you have no need to explicitly call the functions above unless you regard FuelDepot as an independent tool for your own use.
```
for s in range(fd.stepsPerEpoch('test')):
batch = fd.nextBatch('test')
print(fd.currentEpoch('test'), batch['label'])
```
### Call unloadFuel(dataname) to unmount dataset named "dataname" on your FuelDepot.
```
fd.unloadFuel(name='test')
```
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
nebulae-0.1.15.tar.gz
(30.1 kB
view hashes)
Built Distribution
nebulae-0.1.15-py3-none-any.whl
(58.4 kB
view hashes)