The SDK for instrumenting applications for tracking AI costs.
Project description
Nebuly SDK
The SDK for instrumenting applications for tracking AI costs.
TODO
- Nice to have: semantic versioning expansion in package (maybe OSS library or Poetry?)
- Check the publisher doens't crash, and if it does re start it somehow
- batch processing
- if publishing message fails retry (discuss how many retries before dropping the message)
- limit queue size (discuss how long it should be and what to do if it gets full)
Design
classDiagram
Init --> Config
Config --> Package
Init --> MonkeyPatching
MonkeyPatching --> Observer_T
Init --> Observer
Init --> Consumer
Init --> DevelopmentPhase
Init --> SpanWatch
Init --> Observer_T
MonkeyPatching --> Package
MonkeyPatching --> SpanWatch
Observer --> DevelopmentPhase
Observer --> SpanWatch
Observer --> Publisher_T
Observer --> SpanWatch
Consumer --> SpanWatch
Consumer --> Publisher_T
Observer --|> Observer_T
Consumer --|> Publisher_T
Publisher_T --> SpanWatch
Observer_T --> SpanWatch
<<Interface>> Publisher_T
<<Interface>> Observer_T
<<Entity>> Package
<<Entity>> SpanWatch
<<Enum>> DevelopmentPhase
Code Quality Checks
This section provides guidelines and instructions on how to perform code quality checks using Black as a formatter, **Ruff ** as a linter, and **SonarCloud ** as a code quality checker. These tools assist in ensuring that the codebase adheres to a consistent style, follows best practices, and meets predefined quality standards.
Setup
To set up the code quality checks for this project:
- Clone the repository
- Run the setup command to install the necessary requirements, including Poetry for handling dependencies
make setup
Code Formatting and Linting
The code formatting and linting checks help maintain consistent style and identify potential issues. Black and Ruff are automatically invoked with each commit, but they can also be utilized independently without committing changes:
- To display the issues detected by the linter
make lint
- To automatically apply the formatter changes and the suggested changes by the linter, use the following command
make lint-fix
Supported Providers
- OpenAI
- Azure OpenAI
- Cohere
- Anthropic
- HuggingFace pipelines
- HuggingFace HUB
- LangChain
- Amazon Bedrock
- Amazon SageMaker
- Google PALM API
- Google VertexAI
Usage
Make sure you initialize Nebuly before importing other libraries
like openai
, cohere
, huggingface
, etc.
Simple usage
In the simple case, you can just import nebuly and call the init function with your API key. This will automatically setup all the tracking for you. After that, you can call the other libraries as normal.
Example with OpenAI
import os
import nebuly
api_key = os.getenv("NEBULY_API_KEY")
nebuly.init(api_key=api_key)
import openai
openai.api_key = os.getenv("OPENAI_API_KEY")
completion = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "user", "content": "Hello world"}
],
user_id="test_user",
user_group_profile="test_group",
)
Example with LangChain
import os
import nebuly
api_key = os.getenv("NEBULY_API_KEY")
nebuly.init(api_key=api_key)
# Setup LangChain
from langchain.chains import LLMChain
from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
llm = OpenAI(temperature=0.9)
prompt = PromptTemplate(
input_variables=["product"],
template="What is a good name for a company that makes {product}?",
)
chain = LLMChain(llm=llm, prompt=prompt)
result = chain.run(
"colorful socks",
user_id="test_user",
user_group_profile="test_group",
)
Advanced usage: Context managers
In the simple case, each call will be stored as a separate Interaction, you can use context managers to group more calls in a single Interaction:
Example with OpenAI and Cohere
import os
import nebuly
from nebuly.contextmanager import new_interaction
api_key = os.getenv("NEBULY_API_KEY")
nebuly.init(api_key=api_key)
# Setup OpenAI
import openai
openai.api_key = os.getenv("OPENAI_API_KEY")
# Setup Cohere
import cohere
co = cohere.Client(os.getenv("COHERE_API_KEY"))
with new_interaction(user_id="test_user", user_group_profile="test_group") as interaction:
# interaction.set_input("Some custom input")
# interaction.set_history([{"role": "user/assistant", "content": "sample content"}}])
completion_1 = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are an helpful assistant"},
{"role": "user", "content": "Hello world"}
]
)
completion_2 = co.generate(
prompt='Please explain to me how LLMs work',
)
# interaction.set_output("Some custom output")
Example with LangChain
import os
import nebuly
from nebuly.contextmanager import new_interaction
api_key = os.getenv("NEBULY_API_KEY")
nebuly.init(api_key=api_key)
# Setup LangChain
from langchain.chains import LLMChain
from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
llm = OpenAI(temperature=0.9)
prompt = PromptTemplate(
input_variables=["product"],
template="What is a good name for a company that makes {product}?",
)
chain = LLMChain(llm=llm, prompt=prompt)
with new_interaction(user_id="test_user", user_group_profile="test_group") as interaction:
interaction.set_input("What is a good name for a company that makes colorful socks?")
# interaction.set_history(...)
result = chain.run("colorful socks")
interaction.set_output("colorful socks spa")
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.