Skip to main content

Simple CLI for downloading data for Australia's NEM from AEMO.

Project description

nem-data

A simple & opinionated Python command line tool to access Australian National Energy Market (NEM) data provided by the Australian Energy Market Operator (AEMO). It features:

  • access to the NEMDE dataset as well as the predispatch, unit-scada, trading-price, demand and interconnectors tables from MMSDM,
  • a cache to not re-download data that already exists in ~/nem-data/data,
  • adds interval-start and interval-end columns.

It is designed for use by researchers & data scientists - this tool supports my personal research work. It is not designed for production use - see NEMOSIS for a production grade package.

See A Hackers Guide to AEMO & NEM Data for more context on the data provided by AEMO.

Setup

$ pip install nemdata

Use

CLI

$ nemdata --help
Usage: nemdata [OPTIONS]

  Downloads NEM data from AEMO.

Options:
  -t, --table TEXT          Available data is nemde, predispatch, unit-scada,
                            trading-price, demand, interconnectors.
  -s, --start TEXT          Start date (YYYY-MM or YYYY-MM-DD for NEMDE).
  -e, --end TEXT            End date (incusive) (YYYY-MM or YYYY-MM-DD for
                            NEMDE).
  --dry-run / --no-dry-run  Whether to save downloaded data to disk.
  --help                    Show this message and exit.

Download NEMDE data for the first three days in January 2018:

$ nemdata -t nemde --start 2018-01-01 --end 2018-01-03

Download trading price data from MMSDM for January to March 2018:

$ nemdata -t trading-price -s 2018-01 -e 2018-03

Python

Download trading price data from MMSDM for January to Feburary 2020:

import nemdata

data = nemdata.download(start="2020-01", end="2020-02", table="trading-price")

Load this data back into Python:

data = nemdata.load()['trading-price']

Data

Data is downloaded into into $HOME/nem-data/data/:

$ nemdata -t trading-price -s 2020-01 -e 2020-02
$ tree ~/nem-data
/Users/adam/nem-data
└── data
    └── trading-price
        ├── 2020-01
        │   ├── PUBLIC_DVD_TRADINGPRICE_202001010000.CSV
        │   ├── clean.csv
        │   ├── clean.parquet
        │   └── raw.zip
        └── 2020-02
            ├── PUBLIC_DVD_TRADINGPRICE_202002010000.CSV
            ├── clean.csv
            ├── clean.parquet
            └── raw.zip

A few things happen during data processing:

  • the top & bottom rows of the raw CSV are removed to create a rectangular CSV,
  • interval-start and interval-end columns are added,
  • when using nemdata.loader.loader for the trading-price, all data is resampled to a 5 minute frequency (both before and after the 30 to 5 minute settlement interval change).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nemdata-0.3.0.tar.gz (8.2 kB view details)

Uploaded Source

Built Distribution

nemdata-0.3.0-py3-none-any.whl (9.7 kB view details)

Uploaded Python 3

File details

Details for the file nemdata-0.3.0.tar.gz.

File metadata

  • Download URL: nemdata-0.3.0.tar.gz
  • Upload date:
  • Size: 8.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.2.2 CPython/3.10.6 Linux/5.15.0-1024-azure

File hashes

Hashes for nemdata-0.3.0.tar.gz
Algorithm Hash digest
SHA256 60c2a753be87f7838c437a09eaa674ec02527120beac902d2d67fd183eb32b88
MD5 765eaaeb540d31c3933f5d0826ebe6ad
BLAKE2b-256 7ea936ea3d6174bfb79c0cbfb0b76818d89f591b5a025dacec2cff887239d02c

See more details on using hashes here.

File details

Details for the file nemdata-0.3.0-py3-none-any.whl.

File metadata

  • Download URL: nemdata-0.3.0-py3-none-any.whl
  • Upload date:
  • Size: 9.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.2.2 CPython/3.10.6 Linux/5.15.0-1024-azure

File hashes

Hashes for nemdata-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 c4817d9da2d1d3a749cdea7bca6f90483880ef927bff15e14545a9229cbd34d6
MD5 0bf67a8435c3c1f39cfac7454a00d619
BLAKE2b-256 5cd402ec59f7fc271ea698dfd6bb9bf537e3cef290a230706e7f954ecb17e06e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page