Skip to main content

Simple CLI for downloading data for Australia's NEM from AEMO.

Project description

nem-data

A simple & opinionated Python command line tool to access Australian National Energy Market (NEM) data provided by the Australian Energy Market Operator (AEMO). It features:

  • access to the NEMDE dataset as well as the predispatch, unit-scada, trading-price, demand and interconnectors tables from MMSDM,
  • a cache to not re-download data that already exists in ~/nem-data/data,
  • adds interval-start and interval-end columns.

It is designed for use by researchers & data scientists - this tool supports my personal research work. It is not designed for production use - see NEMOSIS for a production grade package.

See A Hackers Guide to AEMO & NEM Data for more context on the data provided by AEMO.

Setup

$ pip install nemdata

Use

CLI

$ nemdata --help
Usage: nemdata [OPTIONS]

  Downloads NEM data from AEMO.

Options:
  -t, --table TEXT          Available tables: nemde, predispatch, unit-scada,
                            trading-price, demand, interconnectors.
  -s, --start TEXT          Start date (YYYY-MM or YYYY-MM-DD for NEMDE).
  -e, --end TEXT            End date (incusive) (YYYY-MM or YYYY-MM-DD for
                            NEMDE).
  --dry-run / --no-dry-run  Whether to save downloaded data to disk.
  --help                    Show this message and exit.

Download NEMDE data for the first three days in January 2018:

$ nemdata -t nemde --start 2018-01-01 --end 2018-01-03

Download trading price data from MMSDM for January to March 2018:

$ nemdata -t trading-price -s 2018-01 -e 2018-03

Python

Download trading price data from MMSDM for January to Feburary 2020:

import nemdata

data = nemdata.download(start="2020-01", end="2020-02", table="trading-price")

Load this data back into Python:

data = nemdata.load()['trading-price']

Data

Data is downloaded into into $HOME/nem-data/data/:

$ nemdata -t trading-price -s 2020-01 -e 2020-02
$ tree ~/nem-data
/Users/adam/nem-data
└── data
    └── trading-price
        ├── 2020-01
        │   ├── PUBLIC_DVD_TRADINGPRICE_202001010000.CSV
        │   ├── clean.csv
        │   ├── clean.parquet
        │   └── raw.zip
        └── 2020-02
            ├── PUBLIC_DVD_TRADINGPRICE_202002010000.CSV
            ├── clean.csv
            ├── clean.parquet
            └── raw.zip

A few things happen during data processing:

  • the top & bottom rows of the raw CSV are removed to create a rectangular CSV,
  • interval-start and interval-end columns are added with timezones,
  • when using nemdata.loader.loader for the trading-price, all data is resampled to a 5 minute frequency (both before and after the 30 to 5 minute settlement interval change).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nemdata-0.3.1.tar.gz (8.5 kB view details)

Uploaded Source

Built Distribution

nemdata-0.3.1-py3-none-any.whl (10.2 kB view details)

Uploaded Python 3

File details

Details for the file nemdata-0.3.1.tar.gz.

File metadata

  • Download URL: nemdata-0.3.1.tar.gz
  • Upload date:
  • Size: 8.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.2.2 CPython/3.10.6 Linux/5.15.0-1024-azure

File hashes

Hashes for nemdata-0.3.1.tar.gz
Algorithm Hash digest
SHA256 045e82a474bad9bcbb902a8cfcde49810d4b70e5984463f1eb8d29377fe66163
MD5 d58f26defbf83c5fe699522c27b865a9
BLAKE2b-256 31c966d607db45e665f7e02ba882117ce5154b65190c7aa212f2cd7e53eb3030

See more details on using hashes here.

File details

Details for the file nemdata-0.3.1-py3-none-any.whl.

File metadata

  • Download URL: nemdata-0.3.1-py3-none-any.whl
  • Upload date:
  • Size: 10.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.2.2 CPython/3.10.6 Linux/5.15.0-1024-azure

File hashes

Hashes for nemdata-0.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 31599877f767b63e789b578cfb4964935d252c41f47103bc74b8655933e97104
MD5 76f8d6995d3a36bd439b40ae1c06b589
BLAKE2b-256 2138b314da4b5bc7af76e93e486315e9b8f5789d528f2f8778114bbf0fc0319e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page