Skip to main content

Simple CLI for downloading data for Australia's NEM from AEMO.

Project description

nem-data

A simple & opinionated Python command line tool to access Australian National Energy Market (NEM) data provided by the Australian Energy Market Operator (AEMO). It features:

  • access to the NEMDE dataset as well as the predispatch, unit-scada, trading-price, demand and interconnectors tables from MMSDM,
  • a cache to not re-download data that already exists in ~/nem-data/data,
  • adds interval-start and interval-end columns.

It is designed for use by researchers & data scientists - this tool supports my personal research work. It is not designed for production use - see NEMOSIS for a production grade package.

See A Hackers Guide to AEMO & NEM Data for more context on the data provided by AEMO.

Setup

$ pip install nemdata

Use

CLI

$ nemdata --help
Usage: nemdata [OPTIONS]

  Downloads NEM data from AEMO.

Options:
  -t, --table TEXT          Available tables: nemde, predispatch, unit-scada,
                            trading-price, demand, interconnectors.
  -s, --start TEXT          Start date (YYYY-MM or YYYY-MM-DD for NEMDE).
  -e, --end TEXT            End date (incusive) (YYYY-MM or YYYY-MM-DD for
                            NEMDE).
  --dry-run / --no-dry-run  Whether to save downloaded data to disk.
  --help                    Show this message and exit.

Download NEMDE data for the first three days in January 2018:

$ nemdata -t nemde --start 2018-01-01 --end 2018-01-03

Download trading price data from MMSDM for January to March 2018:

$ nemdata -t trading-price -s 2018-01 -e 2018-03

Python

Download trading price data from MMSDM for January to Feburary 2020:

import nemdata

data = nemdata.download(start="2020-01", end="2020-02", table="trading-price")

Load this data back into Python:

data = nemdata.load()['trading-price']

Data

Data is downloaded into into $HOME/nem-data/data/:

$ nemdata -t trading-price -s 2020-01 -e 2020-02
$ tree ~/nem-data
/Users/adam/nem-data
└── data
    └── trading-price
        ├── 2020-01
        │   ├── PUBLIC_DVD_TRADINGPRICE_202001010000.CSV
        │   ├── clean.csv
        │   ├── clean.parquet
        │   └── raw.zip
        └── 2020-02
            ├── PUBLIC_DVD_TRADINGPRICE_202002010000.CSV
            ├── clean.csv
            ├── clean.parquet
            └── raw.zip

A few things happen during data processing:

  • the top & bottom rows of the raw CSV are removed to create a rectangular CSV,
  • interval-start and interval-end columns are added with timezones,
  • when using nemdata.loader.loader for the trading-price, all data is resampled to a 5 minute frequency (both before and after the 30 to 5 minute settlement interval change).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nemdata-0.3.2.tar.gz (8.6 kB view details)

Uploaded Source

Built Distribution

nemdata-0.3.2-py3-none-any.whl (10.3 kB view details)

Uploaded Python 3

File details

Details for the file nemdata-0.3.2.tar.gz.

File metadata

  • Download URL: nemdata-0.3.2.tar.gz
  • Upload date:
  • Size: 8.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.2.2 CPython/3.10.6 Linux/5.15.0-1024-azure

File hashes

Hashes for nemdata-0.3.2.tar.gz
Algorithm Hash digest
SHA256 577cc3859f84547003d9debf902ca94af3cfebe07e2dc494bebdafd83f5179d6
MD5 f3aa04afa8e327825d55a2218d5cba06
BLAKE2b-256 1f8c71d2bc47df24f3a81ea477d8e81c10fdfef5ca030984fe7727c9a1005295

See more details on using hashes here.

File details

Details for the file nemdata-0.3.2-py3-none-any.whl.

File metadata

  • Download URL: nemdata-0.3.2-py3-none-any.whl
  • Upload date:
  • Size: 10.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.2.2 CPython/3.10.6 Linux/5.15.0-1024-azure

File hashes

Hashes for nemdata-0.3.2-py3-none-any.whl
Algorithm Hash digest
SHA256 b91829397162e4927090e4203a2a0b196f4c4e8b6dced681a5d4423f9e068546
MD5 788bbf176e7105fb9d8cd1ccb04b87b0
BLAKE2b-256 e33d8a36816a03ac3b1890abcccbeafdcd1336eaf9e02a55dca20a3330a043c3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page