Skip to main content

Simple CLI for downloading data for Australia's NEM from AEMO.

Project description

nem-data

A simple & opinionated Python command line tool to access Australian National Energy Market (NEM) data provided by the Australian Energy Market Operator (AEMO). It features:

  • access to the NEMDE dataset as well as the predispatch, unit-scada, trading-price, demand and interconnectors tables from MMSDM,
  • a cache to not re-download data that already exists in ~/nem-data/data,
  • adds interval-start and interval-end columns.

It is designed for use by researchers & data scientists - this tool supports my personal research work. It is not designed for production use - see NEMOSIS for a production grade package.

See A Hackers Guide to AEMO & NEM Data for more context on the data provided by AEMO.

Setup

$ pip install nemdata

Use

CLI

$ nemdata --help
Usage: nemdata [OPTIONS]

  Downloads NEM data from AEMO.

Options:
  -t, --table TEXT          Available tables: nemde, predispatch, unit-scada,
                            trading-price, demand, interconnectors.
  -s, --start TEXT          Start date (YYYY-MM or YYYY-MM-DD for NEMDE).
  -e, --end TEXT            End date (incusive) (YYYY-MM or YYYY-MM-DD for
                            NEMDE).
  --dry-run / --no-dry-run  Whether to save downloaded data to disk.
  --help                    Show this message and exit.

Download NEMDE data for the first three days in January 2018:

$ nemdata -t nemde --start 2018-01-01 --end 2018-01-03

Download trading price data from MMSDM for January to March 2018:

$ nemdata -t trading-price -s 2018-01 -e 2018-03

Python

Download trading price data from MMSDM for January to Feburary 2020:

import nemdata

data = nemdata.download(start="2020-01", end="2020-02", table="trading-price")

Load this data back into Python:

data = nemdata.load()['trading-price']

Data

Data is downloaded into into $HOME/nem-data/data/:

$ nemdata -t trading-price -s 2020-01 -e 2020-02
$ tree ~/nem-data
/Users/adam/nem-data
└── data
    └── trading-price
        ├── 2020-01
        │   ├── PUBLIC_DVD_TRADINGPRICE_202001010000.CSV
        │   ├── clean.csv
        │   ├── clean.parquet
        │   └── raw.zip
        └── 2020-02
            ├── PUBLIC_DVD_TRADINGPRICE_202002010000.CSV
            ├── clean.csv
            ├── clean.parquet
            └── raw.zip

A few things happen during data processing:

  • the top & bottom rows of the raw CSV are removed to create a rectangular CSV,
  • interval-start and interval-end columns are added with timezones,
  • when using nemdata.loader.loader for the trading-price, all data is resampled to a 5 minute frequency (both before and after the 30 to 5 minute settlement interval change).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nemdata-0.3.3.tar.gz (8.6 kB view details)

Uploaded Source

Built Distribution

nemdata-0.3.3-py3-none-any.whl (10.3 kB view details)

Uploaded Python 3

File details

Details for the file nemdata-0.3.3.tar.gz.

File metadata

  • Download URL: nemdata-0.3.3.tar.gz
  • Upload date:
  • Size: 8.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.2.2 CPython/3.10.6 Linux/5.15.0-1024-azure

File hashes

Hashes for nemdata-0.3.3.tar.gz
Algorithm Hash digest
SHA256 8b7e8adf17c12bddff664b62dcebe424406e4a5015c4a8b6c7bcbc40fbfbca0e
MD5 36957e1947c66f2155d9439c2a858882
BLAKE2b-256 ff445d962d68b0143fc1a5318c0f4472221c13e770be08f290cf07d6c5fb87f9

See more details on using hashes here.

File details

Details for the file nemdata-0.3.3-py3-none-any.whl.

File metadata

  • Download URL: nemdata-0.3.3-py3-none-any.whl
  • Upload date:
  • Size: 10.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.2.2 CPython/3.10.6 Linux/5.15.0-1024-azure

File hashes

Hashes for nemdata-0.3.3-py3-none-any.whl
Algorithm Hash digest
SHA256 c64b0d13657080302a2046857e7aaee3e068c98d6276eb4f2f1b5ecb78dd5a51
MD5 e1852837a3100d0450f5c38a71d08d48
BLAKE2b-256 937382211a9575d62d08d46481fdfa48b82d92ffd75696115e6dfc41cdd2ed1d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page