Skip to main content

NeMo-Aligner - a toolkit for model alignment

Project description

NVIDIA NeMo-Aligner

Latest News

  • We released Nemotron-4-340B Base, Instruct, Reward. The Instruct and Reward variants are trained in Nemo-Aligner. Please see the Helpsteer2 paper for more details on the reward model training.
  • We are excited to announce the release of accelerated generation support in our RLHF pipeline using TensorRT-LLM. For more information, please refer to our RLHF documentation.
  • NeMo-Aligner Paper is now out on arxiv!

Introduction

NeMo-Aligner is a scalable toolkit for efficient model alignment. The toolkit has support for state-of-the-art model alignment algorithms such as SteerLM, DPO, and Reinforcement Learning from Human Feedback (RLHF). These algorithms enable users to align language models to be more safe, harmless, and helpful. Users can perform end-to-end model alignment on a wide range of model sizes and take advantage of all the parallelism techniques to ensure their model alignment is done in a performant and resource-efficient manner. For more technical details, please refer to our paper.

The NeMo-Aligner toolkit is built using the NeMo Framework, which enables scalable training across thousands of GPUs using tensor, data, and pipeline parallelism for all alignment components. Additionally, our checkpoints are cross-compatible with the NeMo ecosystem, facilitating inference deployment and further customization (https://github.com/NVIDIA/NeMo-Aligner).

The toolkit is currently in it's early stages. We are committed to improving the toolkit to make it easier for developers to pick and choose different alignment algorithms to build safe, helpful, and reliable models.

Key Features

Learn More

Latest Release

For the latest stable release, please see the releases page. All releases come with a pre-built container. Changes within each release will be documented in CHANGELOG.

Install Your Own Environment

Requirements

NeMo-Aligner has the same requirements as the NeMo Toolkit Requirements with the addition of PyTriton.

Install NeMo-Aligner

Please follow the same steps as outlined in the NeMo Toolkit Installation Guide. After installing NeMo, execute the following additional command:

pip install nemo-aligner

Alternatively, if you prefer to install the latest commit:

pip install .

Docker Containers

We provide an official NeMo-Aligner Dockerfile which is based on stable, tested versions of NeMo, Megatron-LM, and TransformerEngine. The primary objective of this Dockerfile is to ensure stability, although it might not always reflect the very latest versions of those three packages. You can access our Dockerfile here.

Alternatively, you can build the NeMo Dockerfile here NeMo Dockerfile and add RUN pip install nemo-aligner at the end.

Future work

  • We will continue improving the stability of the PPO learning phase.
  • Improve the performance of RLHF.
  • Add TRT-LLM inference support for Rejection Sampling.

Contribute to NeMo-Aligner

We welcome community contributions! Please refer to CONTRIBUTING.md for guidelines.

Cite NeMo-Aligner in Your Work

@misc{shen2024nemoaligner,
      title={NeMo-Aligner: Scalable Toolkit for Efficient Model Alignment},
      author={Gerald Shen and Zhilin Wang and Olivier Delalleau and Jiaqi Zeng and Yi Dong and Daniel Egert and Shengyang Sun and Jimmy Zhang and Sahil Jain and Ali Taghibakhshi and Markel Sanz Ausin and Ashwath Aithal and Oleksii Kuchaiev},
      year={2024},
      eprint={2405.01481},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

License

This toolkit is licensed under the Apache License, Version 2.0.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nemo_aligner-0.5.0.tar.gz (104.2 kB view details)

Uploaded Source

Built Distribution

nemo_aligner-0.5.0-py3-none-any.whl (145.2 kB view details)

Uploaded Python 3

File details

Details for the file nemo_aligner-0.5.0.tar.gz.

File metadata

  • Download URL: nemo_aligner-0.5.0.tar.gz
  • Upload date:
  • Size: 104.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for nemo_aligner-0.5.0.tar.gz
Algorithm Hash digest
SHA256 75030ddda4ea4f9d907afb13800b89f311b3cdd5f581b4a1d1e543fc7ebb4988
MD5 ec8f455ebb5925cd04406b383fe4d7f4
BLAKE2b-256 0bb9920d9d93ccea0782afd5946d68a446ee08c21cde648806aa01527a5af55e

See more details on using hashes here.

File details

Details for the file nemo_aligner-0.5.0-py3-none-any.whl.

File metadata

  • Download URL: nemo_aligner-0.5.0-py3-none-any.whl
  • Upload date:
  • Size: 145.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for nemo_aligner-0.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 56f514f963e40dd0ab69c0bf535aa2cce1d040680a44e575af68b0b5f2bfd4d2
MD5 c8adf51e5640793bc1a8f750d29ecbc2
BLAKE2b-256 36d363d4d92779de4491362162502b4393e66a8c6b36b63a7a93d99ce4ac2e60

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page