Skip to main content

Write meter readings to AEMO NEM12 and NEM13 data files

Project description

nem-writer

PyPI version Build Status Coverage Status

Write meter readings to AEMO NEM12 (interval metering data) and NEM13 (accumulated metering data) data files

Accumulated Data (NEM13)

from datetime import datetime
from nemwriter import NEM13

m = NEM13(to_participant='123')
ch = m.add_reading(nmi='123',
                    nmi_configuration='E1B1B2',
                    register_id='1',
                    nmi_suffix='E1',
                    previous_read=412,
                    previous_read_date=datetime(2017,1,1),
                    previous_quality_method='A',
                    current_read=512,
                    current_read_date=datetime(2017,2,1),
                    current_quality_method='A',
                    quantity=100,
                    uom='kWh'
                    )
output = m.output_csv(file_path='output.csv')

Will output:

100,NEM13,201701010101,,123
250,123,E1B1B2,1,E1,,,E,412,201701010000,A,,,512,201702010000,A,,,100,kWh,,,
900

Interval Data (NEM12)

from datetime import datetime
from nemwriter import NEM12

m = NEM12(to_participant='123')
readings = [
    # read end, read value, quality method, event code, event desc
    [datetime(2004, 4, 18, 0, 30), 10.1, 'A', 79, 'Power Outage Alarm'],
    [datetime(2004, 4, 18, 1, 0), 11.2, 'A'],
    [datetime(2004, 4, 18, 1, 30), 12.3, 'A'],
    [datetime(2004, 4, 18, 2, 0), 13.4, 'A'],
]

ch = m.add_readings(nmi='123',
                    nmi_configuration='E1B1B2',
                    nmi_suffix='E1', uom='kWh',
                    readings=readings)
output = m.output_csv(file_path='output.csv')

Will output:

100,NEM12,201701010101,,123
200,123,E1B1B2,,E1,,,kWh,30,
300,20040418,10.1,11.2,12.3,13.4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,V,,,,
400,1,1,A,79,Power Outage Alarm
400,2,48,A,,
900

Alternatively, save as a compressed csv in a zip file.

output = m.output_zip(file_path='output.zip')

From Pandas DataFrame

If you create a pandas DataFrame, for example:

num_intervals = 288
index = [datetime(2004, 4, 1) + timedelta(minutes=5*x) for x in range(1,num_intervals+1)]
e1 = [randrange(1,10) for x in range(1,num_intervals+1)]
e2 = [randrange(1,5) for x in range(1,num_intervals+1)]
s1 = pd.Series(data=e1, index=index, name="E1")
s2 = pd.Series(data=e2, index=index, name="E2")
df=pd.concat([s1,s2],axis=1)
print(df)
                     E1  E2
2004-04-01 00:05:00   2   3
2004-04-01 00:10:00   8   3
2004-04-01 00:15:00   7   2
2004-04-01 00:20:00   4   3
2004-04-01 00:25:00   3   4
...                  ..  ..
2004-04-01 23:40:00   9   2
2004-04-01 23:45:00   1   1
2004-04-01 23:50:00   6   2
2004-04-01 23:55:00   7   1
2004-04-01 00:00:00   4   2

You can easily output the dataframe to a NEM12 file:

m = NEM12(to_participant='123')
m.add_dataframe(nmi='123', interval=5, df=df, uoms={'E1': 'kWh', 'E2': 'kWh'})
output = m.output_csv(file_path='output.csv')

If your DataFrame has a Quality and EventDesc column, they will also be handled appropriately.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nemwriter-0.4.4.tar.gz (8.6 kB view hashes)

Uploaded source

Built Distribution

nemwriter-0.4.4-py3-none-any.whl (8.7 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page