Skip to main content

Write meter readings to AEMO NEM12 and NEM13 data files

Project description

nem-writer

PyPI version Build Status Coverage Status

Write meter readings to AEMO NEM12 (interval metering data) and NEM13 (accumulated metering data) data files

Accumulated Data (NEM13)

from datetime import datetime
from nemwriter import NEM13

m = NEM13(to_participant='123')
ch = m.add_reading(nmi='123',
                    nmi_configuration='E1B1B2',
                    register_id='1',
                    nmi_suffix='E1',
                    previous_read=412,
                    previous_read_date=datetime(2017,1,1),
                    previous_quality_method='A',
                    current_read=512,
                    current_read_date=datetime(2017,2,1),
                    current_quality_method='A',
                    quantity=100,
                    uom='kWh'
                    )
output = m.output_csv(file_path='output.csv')

Will output:

100,NEM13,201701010101,,123
250,123,E1B1B2,1,E1,,,E,412,201701010000,A,,,512,201702010000,A,,,100,kWh,,,
900

Interval Data (NEM12)

from datetime import datetime
from nemwriter import NEM12

m = NEM12(to_participant='123')
readings = [
    # read end, read value, quality method, event code, event desc
    [datetime(2004, 4, 18, 0, 30), 10.1, 'A', 79, 'Power Outage Alarm'],
    [datetime(2004, 4, 18, 1, 0), 11.2, 'A'],
    [datetime(2004, 4, 18, 1, 30), 12.3, 'A'],
    [datetime(2004, 4, 18, 2, 0), 13.4, 'A'],
]

ch = m.add_readings(nmi='123',
                    nmi_configuration='E1B1B2',
                    nmi_suffix='E1', uom='kWh',
                    readings=readings)
output = m.output_csv(file_path='output.csv')

Will output:

100,NEM12,201701010101,,123
200,123,E1B1B2,,E1,,,kWh,30,
300,20040418,10.1,11.2,12.3,13.4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,V,,,,
400,1,1,A,79,Power Outage Alarm
400,2,48,A,,
900

Alternatively, save as a compressed csv in a zip file.

output = m.output_zip(file_path='output.zip')

From Pandas DataFrame

If you create a pandas DataFrame, for example:

num_intervals = 288
index = [datetime(2004, 4, 1) + timedelta(minutes=5*x) for x in range(1,num_intervals+1)]
e1 = [randrange(1,10) for x in range(1,num_intervals+1)]
e2 = [randrange(1,5) for x in range(1,num_intervals+1)]
s1 = pd.Series(data=e1, index=index, name="E1")
s2 = pd.Series(data=e2, index=index, name="E2")
df=pd.concat([s1,s2],axis=1)
print(df)
                     E1  E2
2004-04-01 00:05:00   2   3
2004-04-01 00:10:00   8   3
2004-04-01 00:15:00   7   2
2004-04-01 00:20:00   4   3
2004-04-01 00:25:00   3   4
...                  ..  ..
2004-04-01 23:40:00   9   2
2004-04-01 23:45:00   1   1
2004-04-01 23:50:00   6   2
2004-04-01 23:55:00   7   1
2004-04-01 00:00:00   4   2

You can easily output the dataframe to a NEM12 file:

m = NEM12(to_participant='123')
m.add_dataframe(nmi='123', interval=5, df=df, uoms={'E1': 'kWh', 'E2': 'kWh'})
output = m.output_csv(file_path='output.csv')

If your DataFrame has a Quality and EventDesc column, they will also be handled appropriately.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nemwriter-0.4.3.tar.gz (8.5 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

nemwriter-0.4.3-py3-none-any.whl (8.6 kB view details)

Uploaded Python 3

File details

Details for the file nemwriter-0.4.3.tar.gz.

File metadata

  • Download URL: nemwriter-0.4.3.tar.gz
  • Upload date:
  • Size: 8.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.4

File hashes

Hashes for nemwriter-0.4.3.tar.gz
Algorithm Hash digest
SHA256 7f55734354f01b21cc209b116753830e1f31b79cdecf6945998008ca367de25d
MD5 da64510e337159a9b09a9140fc9cb97b
BLAKE2b-256 c616311eaf006b3716a1ae242b2468c733305c989e9c6c0ad9f6227bf4ffcdff

See more details on using hashes here.

File details

Details for the file nemwriter-0.4.3-py3-none-any.whl.

File metadata

  • Download URL: nemwriter-0.4.3-py3-none-any.whl
  • Upload date:
  • Size: 8.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.4

File hashes

Hashes for nemwriter-0.4.3-py3-none-any.whl
Algorithm Hash digest
SHA256 9d5387075fcddf70430a07a436f3a52b0965ad320764fcebe0c783c3d57f2edb
MD5 20324df2f4889c2a1a5be3d558614d3c
BLAKE2b-256 3799520df3eb7ffaa6cbfff60078baaa98cd165a6b63366d3d6b12006198d9a2

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page