Skip to main content

Write meter readings to AEMO NEM12 and NEM13 data files

Project description

nem-writer

PyPI version Build Status Coverage Status

Write meter readings to AEMO NEM12 (interval metering data) and NEM13 (accumulated metering data) data files

Accumulated Data (NEM13)

from datetime import datetime
from nemwriter import NEM13

m = NEM13(to_participant='123')
ch = m.add_reading(nmi='123',
                    nmi_configuration='E1B1B2',
                    register_id='1',
                    nmi_suffix='E1',
                    previous_read=412,
                    previous_read_date=datetime(2017,1,1),
                    previous_quality_method='A',
                    current_read=512,
                    current_read_date=datetime(2017,2,1),
                    current_quality_method='A',
                    quantity=100,
                    uom='kWh'
                    )
output = m.output_csv(file_path='output.csv')

Will output:

100,NEM13,201701010101,,123
250,123,E1B1B2,1,E1,,,E,412,201701010000,A,,,512,201702010000,A,,,100,kWh,,,
900

Interval Data (NEM12)

from datetime import datetime
from nemwriter import NEM12

m = NEM12(to_participant='123')
readings = [
    # read end, read value, quality method, event code, event desc
    [datetime(2004, 4, 18, 0, 30), 10.1, 'A', 79, 'Power Outage Alarm'],
    [datetime(2004, 4, 18, 1, 0), 11.2, 'A'],
    [datetime(2004, 4, 18, 1, 30), 12.3, 'A'],
    [datetime(2004, 4, 18, 2, 0), 13.4, 'A'],
]

ch = m.add_readings(nmi='123',
                    nmi_configuration='E1B1B2',
                    nmi_suffix='E1', uom='kWh',
                    readings=readings)
output = m.output_csv(file_path='output.csv')

Will output:

100,NEM12,201701010101,,123
200,123,E1B1B2,,E1,,,kWh,30,
300,20040418,10.1,11.2,12.3,13.4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,V,,,,
400,1,1,A,79,Power Outage Alarm
400,2,48,A,,
900

Alternatively, save as a compressed csv in a zip file.

output = m.output_zip(file_path='output.zip')

From Pandas DataFrame

If you create a pandas DataFrame, for example:

num_intervals = 288
index = [datetime(2004, 4, 1) + timedelta(minutes=5*x) for x in range(1,num_intervals+1)]
e1 = [randrange(1,10) for x in range(1,num_intervals+1)]
e2 = [randrange(1,5) for x in range(1,num_intervals+1)]
s1 = pd.Series(data=e1, index=index, name="E1")
s2 = pd.Series(data=e2, index=index, name="E2")
df=pd.concat([s1,s2],axis=1)
print(df)
                     E1  E2
2004-04-01 00:05:00   2   3
2004-04-01 00:10:00   8   3
2004-04-01 00:15:00   7   2
2004-04-01 00:20:00   4   3
2004-04-01 00:25:00   3   4
...                  ..  ..
2004-04-01 23:40:00   9   2
2004-04-01 23:45:00   1   1
2004-04-01 23:50:00   6   2
2004-04-01 23:55:00   7   1
2004-04-01 00:00:00   4   2

You can easily output the dataframe to a NEM12 file:

m = NEM12(to_participant='123')
m.add_dataframe(nmi='123', interval=5, df=df, uoms={'E1': 'kWh', 'E2': 'kWh'})
output = m.output_csv(file_path='output.csv')

If your DataFrame has a Quality and EventDesc column, they will also be handled appropriately.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nemwriter-0.4.4.tar.gz (8.6 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

nemwriter-0.4.4-py3-none-any.whl (8.7 kB view details)

Uploaded Python 3

File details

Details for the file nemwriter-0.4.4.tar.gz.

File metadata

  • Download URL: nemwriter-0.4.4.tar.gz
  • Upload date:
  • Size: 8.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.4

File hashes

Hashes for nemwriter-0.4.4.tar.gz
Algorithm Hash digest
SHA256 d6028f8ccab9436eb6376db233307c6a579c8fbf722cd8ea10fb679f4342928a
MD5 758ec7dc430c84d63311c75373d5066b
BLAKE2b-256 824f93c3f3b1efd5e525e60b00aeafc6d558f532335f346b270eb3b6f1209e92

See more details on using hashes here.

File details

Details for the file nemwriter-0.4.4-py3-none-any.whl.

File metadata

  • Download URL: nemwriter-0.4.4-py3-none-any.whl
  • Upload date:
  • Size: 8.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.4

File hashes

Hashes for nemwriter-0.4.4-py3-none-any.whl
Algorithm Hash digest
SHA256 3ed77b742bd168526defcdec4510dfff193506dbcf5a3c30686fdabbb4a76049
MD5 1543d0dd3b1a06f95da79c326149d0c4
BLAKE2b-256 15ade473e79d8b5bb751b58c4b26c1cd1d5a61242e4bcf943280d22238f1df1d

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page