Japanese text normalizer for mecab-neologd
Project description
neologdn
neologdn is a Japanese text normalizer for mecab-neologd.
The normalization is based on the neologd’s rules: https://github.com/neologd/mecab-ipadic-neologd/wiki/Regexp.ja
Contributions are welcome!
NOTE: Installing this module requires C++11 compiler.
Installation
$ pip install neologdn
Usage
import neologdn
neologdn.normalize("ハンカクカナ")
# => 'ハンカクカナ'
neologdn.normalize("全角記号!?@#")
# => '全角記号!?@#'
neologdn.normalize("全角記号例外「・」")
# => '全角記号例外「・」'
neologdn.normalize("長音短縮ウェーーーーイ")
# => '長音短縮ウェーイ'
neologdn.normalize("チルダ削除ウェ~∼∾〜〰~イ")
# => 'チルダ削除ウェイ'
neologdn.normalize("いろんなハイフン˗֊‐‑‒–⁃⁻₋−")
# => 'いろんなハイフン-'
neologdn.normalize(" PRML 副 読 本 ")
# => 'PRML副読本'
neologdn.normalize(" Natural Language Processing ")
# => 'Natural Language Processing'
neologdn.normalize("かわいいいいいいいいい", repeat=6)
# => 'かわいいいいいい'
neologdn.normalize("無駄無駄無駄無駄ァ", repeat=1)
# => '無駄ァ'
neologdn.normalize("1995〜2001年", tilde="normalize")
# => '1995~2001年'
neologdn.normalize("1995~2001年", tilde="normalize_zenkaku")
# => '1995〜2001年'
neologdn.normalize("1995〜2001年", tilde="ignore") # Don't convert tilde
# => '1995〜2001年'
neologdn.normalize("1995〜2001年", tilde="remove")
# => '19952001年'
neologdn.normalize("1995〜2001年") # Default parameter
# => '19952001年'
Benchmark
# Sample code from
# https://github.com/neologd/mecab-ipadic-neologd/wiki/Regexp.ja#python-written-by-hideaki-t--overlast
import normalize_neologd
%timeit normalize(normalize_neologd.normalize_neologd)
# => 9.55 s ± 29.4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
import neologdn
%timeit normalize(neologdn.normalize)
# => 6.66 s ± 35.8 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
neologdn is about x1.43 faster than sample code.
details are described as the below notebook: https://github.com/ikegami-yukino/neologdn/blob/master/benchmark/benchmark.ipynb
License
Apache Software License.
Contribution
Contributions are welcome! See: https://github.com/ikegami-yukino/neologdn/blob/master/.github/CONTRIBUTING.md
CHANGES
0.5.2 (2023-08-03)
Support Python 3.10 and 3.11 (Many thanks @polm)
0.5.1 (2021-05-02)
Improve performance of shorten_repeat function (Many thanks @yskn67)
Add tilde option to normalize function
0.4 (2018-12-06)
Add shorten_repeat function, which shortening contiguous substring. For example: neologdn.normalize(“無駄無駄無駄無駄ァ”, repeat=1) -> 無駄ァ
0.3.2 (2018-05-17)
Add option for suppression removal of spaces between Japanese characters
0.2.2 (2018-03-10)
Fix bug (daku-ten & handaku-ten)
Support mac osx 10.13 (Many thanks @r9y9)
0.2.1 (2017-01-23)
Fix bug (Check if a previous character of daku-ten character is in maps) (Many thanks @unnonouno)
0.2 (2016-04-12)
Add lengthened expression (repeating character) threshold
0.1.2 (2016-03-29)
Fix installation bug
0.1.1.1 (2016-03-19)
Support Windows
Explicitly specify to -std=c++11 in build (Many thanks @id774)
0.1.1 (2015-10-10)
Initial release.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
File details
Details for the file neologdn-0.5.2.tar.gz
.
File metadata
- Download URL: neologdn-0.5.2.tar.gz
- Upload date:
- Size: 86.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2f56b2ffddfe7f8613d52b9f6366c224af2bb217c47c1e80e227a348345cce52 |
|
MD5 | baa609fd1e44fc83e68147e89f042f70 |
|
BLAKE2b-256 | 2574a0a015e7ce8da5d12be013f3f0cf7ce85c83b9308f4b7419b70a981e41d9 |
File details
Details for the file neologdn-0.5.2-cp311-cp311-win_amd64.whl
.
File metadata
- Download URL: neologdn-0.5.2-cp311-cp311-win_amd64.whl
- Upload date:
- Size: 53.0 kB
- Tags: CPython 3.11, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 61a7b3d9b8f6c6a49de333f618051e73312bf84241c8cdc4093e71e4b94bef9a |
|
MD5 | 7931088c08442224e7e4aa537410ae8b |
|
BLAKE2b-256 | 7da4d3b937acabe5039d0869c93325f195012f31545bcd7c395e26712ff91013 |
File details
Details for the file neologdn-0.5.2-cp310-cp310-win_amd64.whl
.
File metadata
- Download URL: neologdn-0.5.2-cp310-cp310-win_amd64.whl
- Upload date:
- Size: 58.1 kB
- Tags: CPython 3.10, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b6446d648b3d2f73a69746138b6f8037117b2d14bc1336256e98745dc68577c2 |
|
MD5 | f7ffc219bafa4100d795df2d2ca7c525 |
|
BLAKE2b-256 | 7030645df850d36cbeee3c9df89deb09b72815ef183e89f9341f092a5828481b |
File details
Details for the file neologdn-0.5.2-cp39-cp39-win_amd64.whl
.
File metadata
- Download URL: neologdn-0.5.2-cp39-cp39-win_amd64.whl
- Upload date:
- Size: 58.1 kB
- Tags: CPython 3.9, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 607c22febe363666fdab9a8fae0650eab2df5dcd12324e97239a6767caabeca4 |
|
MD5 | 00c85b08a6a8c87f19fe2811ea24be61 |
|
BLAKE2b-256 | 5a74e14b9f814b3122413f81b07d72718900fcc9fd0c8d1690d4a8e2418b5a60 |
File details
Details for the file neologdn-0.5.2-cp38-cp38-win_amd64.whl
.
File metadata
- Download URL: neologdn-0.5.2-cp38-cp38-win_amd64.whl
- Upload date:
- Size: 52.6 kB
- Tags: CPython 3.8, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ebbe4df98b4784b75c18aed22db79dc985912a090ce8cda876cac103e89f2bae |
|
MD5 | 05130539ea9681e4a70aa2deab06af38 |
|
BLAKE2b-256 | d558a7452f5a0c110566f8a271438939e8a61a9e370b6deb45b8b89d3676e4f8 |
File details
Details for the file neologdn-0.5.2-cp37-cp37m-win_amd64.whl
.
File metadata
- Download URL: neologdn-0.5.2-cp37-cp37m-win_amd64.whl
- Upload date:
- Size: 65.9 kB
- Tags: CPython 3.7m, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 881098e7478cfd76181f7967ab47424cd60c2fd19507e0334c33509a63c8af1c |
|
MD5 | cb5bfd8c969d2f44cc07966301f5ff63 |
|
BLAKE2b-256 | edaf6db458262272640c3c12796849d90a3f97a91a1601a95e027c2cfd40ddb9 |
File details
Details for the file neologdn-0.5.2-cp36-cp36m-win_amd64.whl
.
File metadata
- Download URL: neologdn-0.5.2-cp36-cp36m-win_amd64.whl
- Upload date:
- Size: 68.2 kB
- Tags: CPython 3.6m, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5ae0fb12a2816d65f1ecc4e09a6e7555320283c2cb7d881e2baf2449bb1fc794 |
|
MD5 | 0dd8286656042b98afeb13497180e2e5 |
|
BLAKE2b-256 | 039665fcd58d305f7b4b846ca4734705c5f98f78bd3b4675595a199206731df8 |
File details
Details for the file neologdn-0.5.2-cp27-cp27m-win_amd64.whl
.
File metadata
- Download URL: neologdn-0.5.2-cp27-cp27m-win_amd64.whl
- Upload date:
- Size: 54.3 kB
- Tags: CPython 2.7m, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f4032406ef974aa3d452ba121475f70bb35325588d4695a589d363ded59b076a |
|
MD5 | e7f5ced96eb7d7e7926bd0b71ad01b13 |
|
BLAKE2b-256 | 028a4a979d01235313a0b18bf5591fda4c87acf5cc1ffd8d99b7c80af33fc714 |