Neptune.ai scikit-learn integration library
Project description
Neptune: sklearn integration
See the official docs.
Minimal example:
from sklearn.datasets import load_boston
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
import neptune.new as neptune
import neptune.new.integrations.sklearn as npt_utils
run = neptune.init(project='common/sklearn-integration',
api_token='ANONYMOUS',
name='regression-example',
tags=['RandomForestRegressor', 'regression'])
parameters = {'n_estimators': 70,
'max_depth': 7,
'min_samples_split': 3}
rfr = RandomForestRegressor(**parameters)
X, y = load_boston(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=28743)
rfr.fit(X_train, y_train)
run['rfr_summary'] = npt_utils.create_regressor_summary(rfr, X_train, X_test, y_train, y_test)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
neptune-sklearn-0.9.5.tar.gz
(24.9 kB
view hashes)