Skip to main content

All-in-one repository for state-of-the-art NeRFs

Project description

pyRad🤘

The all-in-one repo for NeRFs

Documentation Status Documentation Status

Quickstart

The quickstart will help you get started with the default vanilla nerf trained on the classic blender lego scene. For more complex changes (e.g. running with your own data/ setting up a new NeRF graph, please see our docs.

1. Installation: Setup the environment

This repository is tested with CUDA 11.3. Make sure to install Conda before preceding.

Installing Conda
This step is fairly self-explanatory, but here are the basic steps. You can also find countless tutorials online.

```
cd /path/to/install/miniconda

mkdir -p miniconda3
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O miniconda3/miniconda.sh
bash miniconda3/miniconda.sh -b -u -p miniconda3
rm -rf miniconda/miniconda.sh
```
# Create the python environment
conda create --name pyrad python=3.8.13
conda activate pyrad

# Clone the repo
git clone git@github.com:plenoptix/pyrad.git

# Install dependencies
cd pyrad
pip install -r environment/requirements.txt

# Install pyrad as a library
pip install -e .

# Install library with CUDA support. Change setup.py to `USE_CUDA = True` and then
python setup.py develop

# Install tiny-cuda-nn (tcnn) to use with the graph_instant_ngp.yaml config
pip install git+https://github.com/NVlabs/tiny-cuda-nn/#subdirectory=bindings/torch

# Run the test cases
pytest tests

2. Getting the data

Download the original NeRF dataset and unfold it in the following format. This is for the blender dataset type. We support the major datasets and allow users to create their own dataset, described in detail here.

|─ pyrad/
   ├─ data/
   |  ├─ blender/
   |     ├─ fern/
   |     ├─ lego/
         ...
      |- <dataset_format>/
         |- <scene>
         ...

3. Training a model

To run with all the defaults, e.g. vanilla nerf method with the blender lego image

# Run a vanilla nerf model.
python scripts/run_train.py

# Run a faster version with instant ngp using tcnn (without the viewer).
python scripts/run_train.py --config-name=graph_instant_ngp.yaml

# Run with the viewer. However, you'll have to start the viewer server first. (See the docs.)
python scripts/run_train.py --config-name=graph_instant_ngp.yaml viewer.enable=true

With support for Hydra, you can run with other configurations by changing appropriate configs defined in configs/ or by setting flags via command-line arguments.

4. Visualizing training runs

We support multiple methods to visualize training, the default configuration uses Tensorboard. More information on logging can be found here.

Real-time Viewer

We have developed our own Real-time web viewer, more information can be found here. This viewer runs during training and is designed to work with models that have fast rendering pipelines.

To enable add the following to your config:

viewer:
  enable: true
Tensorboard

If you run everything with the default configuration we log all training curves, test images, and other stats. Once the job is launched, you will be able to track training by launching the tensorboard in outputs/blender_lego/vanilla_nerf/<timestamp>/<events.tfevents>.

tensorboard --logdir outputs

# or the following
export TENSORBOARD_PORT=<port>
bash environment/run_tensorboard.sh
Weights & Biases

We support logging to weights and biases, to enable add the following to the config:

logging:
    writer:
        WandbWriter

5. Rendering a trajectories during inference

python scripts/run_eval.py --method=traj --traj=spiral --output-filename=output.mp4 --config-name=graph_instant_ngp.yaml trainer.resume_train.load_dir=outputs/blender_lego/instant_ngp/2022-07-07_230905/checkpoints

6. In-depth guide

For a more in-depth tutorial on how to modify/implement your own NeRF Graph, please see our walk-through.

Supported Features

We provide the following support strucutures to make life easier for getting started with NeRFs. For a full description, please refer to our features page.

If you are looking for a feature that is not currently supported, please do not hesitate to contact the Plenoptix team!

:metal: Support for Hydra config structure

:metal: Support for multiple logging interfaces

:metal: Built-in support for profiling code

:metal: Benchmarking scripts

:metal: Speed up your code with Tiny Cuda NN

Benchmarked Model Architectures

Method PSNR
NeRF :hourglass_flowing_sand:
instant NGP :hourglass_flowing_sand:
Mip NeRF :hourglass_flowing_sand:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nerfactory-0.0.0.tar.gz (94.9 kB view details)

Uploaded Source

Built Distribution

nerfactory-0.0.0-py3-none-any.whl (152.8 kB view details)

Uploaded Python 3

File details

Details for the file nerfactory-0.0.0.tar.gz.

File metadata

  • Download URL: nerfactory-0.0.0.tar.gz
  • Upload date:
  • Size: 94.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.12

File hashes

Hashes for nerfactory-0.0.0.tar.gz
Algorithm Hash digest
SHA256 2e4b16a758e85ff585d8800fe69b7061ac97445ccaa3ddefa44d196bbd914c8d
MD5 75f598395734ce63edf033fc22127e14
BLAKE2b-256 e74dbaa1818c5d53d4947b544ddbf83140c0d42944d77d1c0242d466708292e8

See more details on using hashes here.

File details

Details for the file nerfactory-0.0.0-py3-none-any.whl.

File metadata

  • Download URL: nerfactory-0.0.0-py3-none-any.whl
  • Upload date:
  • Size: 152.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.12

File hashes

Hashes for nerfactory-0.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 7901c3cb1cd6fdd41e66751867a59cfda7a9c8419bf52e1c7def95dfb5246bd9
MD5 a54a7032535b9fef2da89d1cae5eab19
BLAKE2b-256 d1347c790d67ebbd3bb7bab9011033e9ccbd0d506d62535e612ddc9eb3820d94

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page