Skip to main content

Entity-level confusion matrix and classification report to evaluate Named Entity Recognition (NER) models.

Project description

nerval

Entity-level confusion matrix and classification report to evaluate Named Entity Recognition (NER) models.

Labelling schemes supported:

  • IO
  • BIO1 (IOB1)
  • BIO2 (IOB2)
  • IOE1
  • IOE2
  • IOBES
  • BILOU
  • BMEWO

Options for the 'scheme' argument:

  • BIO for the following schemes: IO / BIO1 (IOB1) / BIO2 (IOB2) / IOBES / BILOU / BMEWO
  • IOE for the following schemes: IOE1 / IOE2
  • BIO is the default scheme.

Output:

  • Classification report
  • Confusion matrix
  • Labels for the confusion matrix
  • Confusion matrix plot

How to use it:

>>> from nerval import crm

>>> y_true = [['O', 'B-PER', 'I-PER', 'O', 'O', 'O', 'O', 'B-LOC', 'I-LOC']]
>>> y_pred = [['O', 'B-PER', 'O', 'O', 'O', 'O', 'O', 'O', 'B-LOC']]

>>> cr, cm, cm_labels = crm(y_true, y_pred, scheme='BIO')
True Entities: 2
Pred Entities: 2

True Entities with 3 or more tags: 0
Pred Entities with 3 or more tags: 0

True positives:  0
False positives (true = 'O'):  1
False positives (true <> pred):  1
ToT False positives:  2
False negatives:  1

>>> print(cr)
precision  recall  f1_score  true_entities  pred_entities
PER                0.00    0.00      0.00           1.00           0.00
LOC                0.00    0.00      0.00           1.00           1.00
PER__              0.00    0.00      0.00           0.00           1.00
micro_avg          0.00    0.00      0.00           2.00           2.00
macro_avg          0.00    0.00      0.00           2.00           2.00
weighted_avg       0.00    0.00      0.00           2.00           2.00

>>> print(cm)
[[0 1 0 0]
 [1 0 0 0]
 [0 0 0 1]
 [0 0 0 0]]

>>> print(cm_labels)
['LOC', 'O', 'PER', 'PER__']
>>> from nerval import plot_confusion_matrix

>>> y_true = [['O', 'B-PER', 'I-PER', 'O', 'O', 'O', 'O', 'B-LOC', 'I-LOC']]
>>> y_pred = [['O', 'B-PER', 'O', 'O', 'O', 'O', 'O', 'O', 'B-LOC']]

>>> plot_confusion_matrix(cm, cm_labels, normalize=None, decimal_places=2, figsize=(15,15), SMALL_SIZE=8, MEDIUM_SIZE=12, BIGGER_SIZE=14, cmap='OrRd', xticks_rotation='vertical', title='Confusion Matrix')

Note 1:

y_true and y_pred could be:

  • flat lists
  • lists of flat lists
  • lists of nested lists.

Flat lists and lists of nested lists will be converted to lists of lists.

Note 2:

The __ at the end of some entities means that true and pred have the same entity name for the first token but the prediction is somewhat different from the true label. Examples:

>>> y_true = ['B-ORG', 'I-ORG', 'I-ORG'])
>>> y_pred = ['B-ORG']

>>> y_true = ['B-ORG', 'I-ORG', 'I-ORG'])
>>> y_pred = ['B-ORG', 'I-ORG', 'I-ORG', 'I-ORG', 'I-ORG']

>>> y_true = ['B-ORG', 'I-ORG', 'I-ORG'])
>>> y_pred = ['B-ORG', 'I-PER']

>>> y_true = ['B-ORG', 'I-ORG', 'I-ORG'])
>>> y_pred = ['I-ORG', 'I-PER']

Note 3:

The normalize argument could be:

  • None
  • 'true'
  • 'pred'
  • 'all'

Default is None.

Note 4:

In case of division by zero, the result will default to zero.

Installation

pip install nerval

License

MIT

Citation

@misc{nerval,
  title={{nerval}: Entity-level confusion matrix and classification report to evaluate Named Entity Recognition (NER) models.},
  url={https://github.com/mdadda/nerval},
  note={Software available from https://github.com/mdadda/nerval},
  author={Mariangela D'Addato},
  year={2022},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nerval-1.0.1.tar.gz (10.8 kB view details)

Uploaded Source

Built Distribution

nerval-1.0.1-py3-none-any.whl (10.3 kB view details)

Uploaded Python 3

File details

Details for the file nerval-1.0.1.tar.gz.

File metadata

  • Download URL: nerval-1.0.1.tar.gz
  • Upload date:
  • Size: 10.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.7

File hashes

Hashes for nerval-1.0.1.tar.gz
Algorithm Hash digest
SHA256 911d0db0819d8bfb56b87b00e2ba13412673efaeca77d2a1729203f92ef7381f
MD5 ba0a7af0bbfdfda343a3882d39a4ce7b
BLAKE2b-256 ad2f290036747a6a5e16d182cef8a68403e92a90b0e0fb185be8c36d98c57c06

See more details on using hashes here.

File details

Details for the file nerval-1.0.1-py3-none-any.whl.

File metadata

  • Download URL: nerval-1.0.1-py3-none-any.whl
  • Upload date:
  • Size: 10.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.7

File hashes

Hashes for nerval-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 27626895407c465c070aa0bb91de2aa851cee5b2cd733f457fff8f2c61fb32b7
MD5 ba145834d0c2fce72493b4ff08859d06
BLAKE2b-256 b8e8a6f7931e434fc460a47ef44ab11cdb147673a09d4dd007c7c7b576d34267

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page