Skip to main content

Entity-level confusion matrix and classification report to evaluate Named Entity Recognition (NER) models.

Project description

nerval

Entity-level confusion matrix and classification report to evaluate Named Entity Recognition (NER) models.

Labelling schemes supported:

  • IO
  • BIO1 (IOB1)
  • BIO2 (IOB2)
  • IOE1
  • IOE2
  • IOBES
  • BILOU
  • BMEWO

Options for the 'scheme' argument:

  • BIO for the following schemes: IO / BIO1 (IOB1) / BIO2 (IOB2) / IOBES / BILOU / BMEWO
  • IOE for the following schemes: IOE1 / IOE2
  • BIO is the default scheme.

Output:

  • Classification report
  • Confusion matrix
  • Labels for the confusion matrix
  • Confusion matrix plot

How to use it:

>>> from nerval import crm

>>> y_true = [['O', 'B-PER', 'I-PER', 'O', 'O', 'O', 'O', 'B-LOC', 'I-LOC']]
>>> y_pred = [['O', 'B-PER', 'O', 'O', 'O', 'O', 'O', 'O', 'B-LOC']]

>>> cr, cm, cm_labels = crm(y_true, y_pred, scheme='BIO')
True Entities: 2
Pred Entities: 2

True Entities with 3 or more tags: 0
Pred Entities with 3 or more tags: 0

True positives:  0
False positives (true = 'O'):  1
False positives (true <> pred):  1
ToT False positives:  2
False negatives:  1

>>> print(cr)
precision  recall  f1_score  true_entities  pred_entities
PER                0.00    0.00      0.00           1.00           0.00
LOC                0.00    0.00      0.00           1.00           1.00
PER__              0.00    0.00      0.00           0.00           1.00
micro_avg          0.00    0.00      0.00           2.00           2.00
macro_avg          0.00    0.00      0.00           2.00           2.00
weighted_avg       0.00    0.00      0.00           2.00           2.00

>>> print(cm)
[[0 1 0 0]
 [1 0 0 0]
 [0 0 0 1]
 [0 0 0 0]]

>>> print(cm_labels)
['LOC', 'O', 'PER', 'PER__']
>>> from nerval import plot_confusion_matrix

>>> y_true = [['O', 'B-PER', 'I-PER', 'O', 'O', 'O', 'O', 'B-LOC', 'I-LOC']]
>>> y_pred = [['O', 'B-PER', 'O', 'O', 'O', 'O', 'O', 'O', 'B-LOC']]

>>> plot_confusion_matrix(cm, cm_labels, normalize=None, decimal_places=2, figsize=(15,15), SMALL_SIZE=8, MEDIUM_SIZE=12, BIGGER_SIZE=14, cmap='OrRd', xticks_rotation='vertical', title='Confusion Matrix')

Note 1:

y_true and y_pred could be:

  • flat lists
  • lists of flat lists
  • lists of nested lists.

Flat lists and lists of nested lists will be converted to lists of lists.

Note 2:

The __ at the end of some entities means that true and pred have the same entity name for the first token but the prediction is somewhat different from the true label. Examples:

>>> y_true = ['B-ORG', 'I-ORG', 'I-ORG'])
>>> y_pred = ['B-ORG']

>>> y_true = ['B-ORG', 'I-ORG', 'I-ORG'])
>>> y_pred = ['B-ORG', 'I-ORG', 'I-ORG', 'I-ORG', 'I-ORG']

>>> y_true = ['B-ORG', 'I-ORG', 'I-ORG'])
>>> y_pred = ['B-ORG', 'I-PER']

>>> y_true = ['B-ORG', 'I-ORG', 'I-ORG'])
>>> y_pred = ['I-ORG', 'I-PER']

Note 3:

The normalize argument could be:

  • None
  • 'true'
  • 'pred'
  • 'all'

Default is None.

Note 4:

In case of division by zero, the result will default to zero.

Installation

pip install nerval

License

MIT

Citation

@misc{nerval,
  title={{nerval}: Entity-level confusion matrix and classification report to evaluate Named Entity Recognition (NER) models.},
  url={https://github.com/mdadda/nerval},
  note={Software available from https://github.com/mdadda/nerval},
  author={Mariangela D'Addato},
  year={2022},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nerval-1.0.2.tar.gz (3.2 kB view details)

Uploaded Source

Built Distribution

nerval-1.0.2-py3-none-any.whl (3.2 kB view details)

Uploaded Python 3

File details

Details for the file nerval-1.0.2.tar.gz.

File metadata

  • Download URL: nerval-1.0.2.tar.gz
  • Upload date:
  • Size: 3.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.7

File hashes

Hashes for nerval-1.0.2.tar.gz
Algorithm Hash digest
SHA256 59fed2713b9ae2036f4924ad74659e1f4794110748354c02af46763e599571fc
MD5 187c36e8cfb6fd3a2f2f4c49d60236ae
BLAKE2b-256 13c56ce2c3fd1f5d0841ee5ca1a4285ecb9f22a5461d08dbb23ae96db577b695

See more details on using hashes here.

File details

Details for the file nerval-1.0.2-py3-none-any.whl.

File metadata

  • Download URL: nerval-1.0.2-py3-none-any.whl
  • Upload date:
  • Size: 3.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.7

File hashes

Hashes for nerval-1.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 cf3cba427a377ae9abc0e317c4976742f7c57364c602db4c326877208f3e7472
MD5 3f994c0d6ceb2a36dab6587b417d335e
BLAKE2b-256 608675bd4e926bfce946d589d1fdc0c91a673efd716fa94ca90e6451b64ea212

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page