Skip to main content

Entity-level confusion matrix and classification report to evaluate Named Entity Recognition (NER) models.

Project description

nerval

Entity-level confusion matrix and classification report to evaluate Named Entity Recognition (NER) models.

Labelling schemes supported:

  • IO
  • BIO1 (IOB1)
  • BIO2 (IOB2)
  • IOE1
  • IOE2
  • IOBES
  • BILOU
  • BMEWO

Options for the 'scheme' argument:

  • BIO for the following schemes: IO / BIO1 (IOB1) / BIO2 (IOB2) / IOBES / BILOU / BMEWO
  • IOE for the following schemes: IOE1 / IOE2
  • BIO is the default scheme.

Output:

  • Classification report
  • Confusion matrix
  • Labels for the confusion matrix
  • Confusion matrix plot

How to use it:

>>> from nerval import crm

>>> y_true = [['O', 'B-PER', 'I-PER', 'O', 'O', 'O', 'O', 'B-LOC', 'I-LOC']]
>>> y_pred = [['O', 'B-PER', 'O', 'O', 'O', 'O', 'O', 'O', 'B-LOC']]

>>> cr, cm, cm_labels = crm(y_true, y_pred, scheme='BIO')
True Entities: 2
Pred Entities: 2

True Entities with 3 or more tags: 0
Pred Entities with 3 or more tags: 0

True positives:  0
False positives (true = 'O'):  1
False positives (true <> pred):  1
ToT False positives:  2
False negatives:  1

>>> print(cr)
precision  recall  f1_score  true_entities  pred_entities
PER                0.00    0.00      0.00           1.00           0.00
LOC                0.00    0.00      0.00           1.00           1.00
PER__              0.00    0.00      0.00           0.00           1.00
micro_avg          0.00    0.00      0.00           2.00           2.00
macro_avg          0.00    0.00      0.00           2.00           2.00
weighted_avg       0.00    0.00      0.00           2.00           2.00

>>> print(cm)
[[0 1 0 0]
 [1 0 0 0]
 [0 0 0 1]
 [0 0 0 0]]

>>> print(cm_labels)
['LOC', 'O', 'PER', 'PER__']
>>> from nerval import plot_confusion_matrix

>>> y_true = [['O', 'B-PER', 'I-PER', 'O', 'O', 'O', 'O', 'B-LOC', 'I-LOC']]
>>> y_pred = [['O', 'B-PER', 'O', 'O', 'O', 'O', 'O', 'O', 'B-LOC']]

>>> plot_confusion_matrix(cm, cm_labels, normalize=None, decimal_places=2, figsize=(15,15), SMALL_SIZE=8, MEDIUM_SIZE=12, BIGGER_SIZE=14, cmap='OrRd', xticks_rotation='vertical', title='Confusion Matrix')

Note 1:

y_true and y_pred could be:

  • flat lists
  • lists of flat lists
  • lists of nested lists.

Flat lists and lists of nested lists will be converted to lists of lists.

Note 2:

The __ at the end of some entities means that true and pred have the same entity name for the first token but the prediction is somewhat different from the true label. Examples:

>>> y_true = ['B-ORG', 'I-ORG', 'I-ORG'])
>>> y_pred = ['B-ORG']

>>> y_true = ['B-ORG', 'I-ORG', 'I-ORG'])
>>> y_pred = ['B-ORG', 'I-ORG', 'I-ORG', 'I-ORG', 'I-ORG']

>>> y_true = ['B-ORG', 'I-ORG', 'I-ORG'])
>>> y_pred = ['B-ORG', 'I-PER']

>>> y_true = ['B-ORG', 'I-ORG', 'I-ORG'])
>>> y_pred = ['I-ORG', 'I-PER']

Note 3:

The normalize argument could be:

  • None
  • 'true'
  • 'pred'
  • 'all'

Default is None.

Note 4:

In case of division by zero, the result will default to zero.

Installation

pip install nerval

License

MIT

Citation

@misc{nerval,
  title={{nerval}: Entity-level confusion matrix and classification report to evaluate Named Entity Recognition (NER) models.},
  url={https://github.com/mdadda/nerval},
  note={Software available from https://github.com/mdadda/nerval},
  author={Mariangela D'Addato},
  year={2022},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nerval-1.0.3.tar.gz (10.9 kB view details)

Uploaded Source

Built Distribution

nerval-1.0.3-py3-none-any.whl (10.3 kB view details)

Uploaded Python 3

File details

Details for the file nerval-1.0.3.tar.gz.

File metadata

  • Download URL: nerval-1.0.3.tar.gz
  • Upload date:
  • Size: 10.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.7

File hashes

Hashes for nerval-1.0.3.tar.gz
Algorithm Hash digest
SHA256 2a523a626dba03a1a75e6743406954498c942b593bb4889714423a441ebc4c4e
MD5 4d3040149c62daca4a7dc5a7a3fb4e2a
BLAKE2b-256 0211c56fd016c20ae0cba758e0feb7b5c34e4432f5df2fa55d546b7aa50a05f5

See more details on using hashes here.

File details

Details for the file nerval-1.0.3-py3-none-any.whl.

File metadata

  • Download URL: nerval-1.0.3-py3-none-any.whl
  • Upload date:
  • Size: 10.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.7

File hashes

Hashes for nerval-1.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 97943875076392c7cf3b4c4859b64845b1c6935eb2fddd8317260eaa029e1bde
MD5 2a074b7450c9ce8e6a66ffd372e29289
BLAKE2b-256 ca7146599442946337d228ce322ec6a938c77f09b9816eaaf574a49473637a9f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page