Entity-level confusion matrix and classification report to evaluate Named Entity Recognition (NER) models.
Project description
nerval
Entity-level confusion matrix and classification report to evaluate Named Entity Recognition (NER) models.
Labelling schemes supported:
- IO
- BIO1 (IOB1)
- BIO2 (IOB2)
- IOE1
- IOE2
- IOBES
- BILOU
- BMEWO
Options for the 'scheme' argument:
- BIO for the following schemes: IO / BIO1 (IOB1) / BIO2 (IOB2) / IOBES / BILOU / BMEWO
- IOE for the following schemes: IOE1 / IOE2
- BIO is the default scheme.
Output:
- Classification report
- Confusion matrix
- Labels for the confusion matrix
- Confusion matrix plot
How to use it:
>>> from nerval import crm
>>> y_true = [['O', 'B-PER', 'I-PER', 'O', 'O', 'O', 'O', 'B-LOC', 'I-LOC']]
>>> y_pred = [['O', 'B-PER', 'O', 'O', 'O', 'O', 'O', 'O', 'B-LOC']]
>>> cr, cm, cm_labels = crm(y_true, y_pred, scheme='BIO')
True Entities: 2
Pred Entities: 2
True Entities with 3 or more tags: 0
Pred Entities with 3 or more tags: 0
True positives: 0
False positives (true = 'O'): 1
False positives (true <> pred): 1
ToT False positives: 2
False negatives: 1
>>> print(cr)
precision recall f1_score true_entities pred_entities
PER 0.00 0.00 0.00 1.00 0.00
LOC 0.00 0.00 0.00 1.00 1.00
PER__ 0.00 0.00 0.00 0.00 1.00
micro_avg 0.00 0.00 0.00 2.00 2.00
macro_avg 0.00 0.00 0.00 2.00 2.00
weighted_avg 0.00 0.00 0.00 2.00 2.00
>>> print(cm)
[[0 1 0 0]
[1 0 0 0]
[0 0 0 1]
[0 0 0 0]]
>>> print(cm_labels)
['LOC', 'O', 'PER', 'PER__']
>>> from nerval import plot_confusion_matrix
>>> y_true = [['O', 'B-PER', 'I-PER', 'O', 'O', 'O', 'O', 'B-LOC', 'I-LOC']]
>>> y_pred = [['O', 'B-PER', 'O', 'O', 'O', 'O', 'O', 'O', 'B-LOC']]
>>> plot_confusion_matrix(cm, cm_labels, show=True, save=False, img_path=None, normalize=None, decimal_places=2, figsize=(15,15), SMALL_SIZE=8, MEDIUM_SIZE=12, BIGGER_SIZE=14, cmap='OrRd', xticks_rotation='vertical', title='Confusion Matrix')
>>> plot_confusion_matrix(cm, cm_labels, show=True, save=True, img_path=None)
>>> plot_confusion_matrix(cm, cm_labels, show=True, save=True, img_path=r'C:\Users\...\my_conf_matrix.png')
>>> plot_confusion_matrix(cm, cm_labels, show=False, save=True, img_path=None)
>>> plot_confusion_matrix(cm, cm_labels, show=False, save=True, img_path=r'C:\Users\...\my_conf_matrix.png')
Note 1:
y_true and y_pred could be:
- flat lists
- lists of flat lists
- lists of nested lists.
Flat lists and lists of nested lists will be converted to lists of lists.
Note 2:
The __ at the end of some entities means that true and pred have the same entity name for the first token but the prediction is somewhat different from the true label. Examples:
>>> y_true = ['B-ORG', 'I-ORG', 'I-ORG']
>>> y_pred = ['B-ORG']
>>> y_true = ['B-ORG', 'I-ORG', 'I-ORG']
>>> y_pred = ['B-ORG', 'I-ORG', 'I-ORG', 'I-ORG', 'I-ORG']
>>> y_true = ['B-ORG', 'I-ORG', 'I-ORG']
>>> y_pred = ['B-ORG', 'I-PER']
>>> y_true = ['B-ORG', 'I-ORG', 'I-ORG']
>>> y_pred = ['I-ORG', 'I-PER']
Note 3:
The normalize argument could be:
- None
- 'true'
- 'pred'
- 'all'
Default is None.
Note 4:
In case of division by zero, the result will default to zero.
Note 5:
Parameters in function plot_confusion_matrix():
- show: show the plot (default: True)
- save: save the plot (default: False)
- img_path: where to save the plot - e.g. r'C:\Users\User...\my_conf_matrix.png' (default: None - this means save the plot in current dir)
Installation
pip install nerval
conda install -c conda-forge nerval
License
Citation
@misc{nerval,
title={{nerval}: Entity-level confusion matrix and classification report to evaluate Named Entity Recognition (NER) models.},
url={https://github.com/mdadda/nerval},
note={Software available from https://github.com/mdadda/nerval},
author={Mariangela D'Addato},
year={2022},
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file nerval-1.1.1.tar.gz
.
File metadata
- Download URL: nerval-1.1.1.tar.gz
- Upload date:
- Size: 11.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 195f15e7294ca565537729468493fac15afbfe8ba63aa2dfedf29123bb3010dc |
|
MD5 | 4aeedfb5b3c4fecb75e999d9c5e4753c |
|
BLAKE2b-256 | 84759a42170fb47b8f3890678daa2bfc0ea84695600d8324b3ff983dcf2a96d1 |
File details
Details for the file nerval-1.1.1-py3-none-any.whl
.
File metadata
- Download URL: nerval-1.1.1-py3-none-any.whl
- Upload date:
- Size: 10.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 070bdb664e5beb5abc9cee212863edbe7d2cafebc7f06606dbfa06716840aaf3 |
|
MD5 | 8c24a5f7283878ff29bbf5e39c25ab84 |
|
BLAKE2b-256 | a2cd0fe9ccd6e15a2bde1bc460c2cfbe95b342a9f244cbdd43ceeff2c996c944 |