Skip to main content

Entity-level confusion matrix and classification report to evaluate Named Entity Recognition (NER) models.

Project description

nerval

Entity-level confusion matrix and classification report to evaluate Named Entity Recognition (NER) models.

Labelling schemes supported:

  • IO
  • BIO1 (IOB1)
  • BIO2 (IOB2)
  • IOE1
  • IOE2
  • IOBES
  • BILOU
  • BMEWO

Options for the 'scheme' argument:

  • BIO for the following schemes: IO / BIO1 (IOB1) / BIO2 (IOB2) / IOBES / BILOU / BMEWO
  • IOE for the following schemes: IOE1 / IOE2
  • BIO is the default scheme.

Output:

  • Classification report
  • Confusion matrix
  • Labels for the confusion matrix
  • Confusion matrix plot

How to use it:

>>> from nerval import crm

>>> y_true = [['O', 'B-PER', 'I-PER', 'O', 'O', 'O', 'O', 'B-LOC', 'I-LOC']]
>>> y_pred = [['O', 'B-PER', 'O', 'O', 'O', 'O', 'O', 'O', 'B-LOC']]

>>> cr, cm, cm_labels = crm(y_true, y_pred, scheme='BIO')
True Entities: 2
Pred Entities: 2

True Entities with 3 or more tags: 0
Pred Entities with 3 or more tags: 0

True positives:  0
False positives (true = 'O'):  1
False positives (true <> pred):  1
ToT False positives:  2
False negatives:  1

>>> print(cr)
precision  recall  f1_score  true_entities  pred_entities
PER                0.00    0.00      0.00           1.00           0.00
LOC                0.00    0.00      0.00           1.00           1.00
PER__              0.00    0.00      0.00           0.00           1.00
micro_avg          0.00    0.00      0.00           2.00           2.00
macro_avg          0.00    0.00      0.00           2.00           2.00
weighted_avg       0.00    0.00      0.00           2.00           2.00

>>> print(cm)
[[0 1 0 0]
 [1 0 0 0]
 [0 0 0 1]
 [0 0 0 0]]

>>> print(cm_labels)
['LOC', 'O', 'PER', 'PER__']
>>> from nerval import plot_confusion_matrix

>>> y_true = [['O', 'B-PER', 'I-PER', 'O', 'O', 'O', 'O', 'B-LOC', 'I-LOC']]
>>> y_pred = [['O', 'B-PER', 'O', 'O', 'O', 'O', 'O', 'O', 'B-LOC']]

>>> plot_confusion_matrix(cm, cm_labels, show=True, save=False, img_path=None, normalize=None, decimal_places=2, figsize=(15,15), SMALL_SIZE=8, MEDIUM_SIZE=12, BIGGER_SIZE=14, cmap='OrRd', xticks_rotation='vertical', title='Confusion Matrix')

>>> plot_confusion_matrix(cm, cm_labels, show=True, save=True, img_path=None)

>>> plot_confusion_matrix(cm, cm_labels, show=True, save=True, img_path=r'C:\Users\...\my_conf_matrix.png')

>>> plot_confusion_matrix(cm, cm_labels, show=False, save=True, img_path=None)

>>> plot_confusion_matrix(cm, cm_labels, show=False, save=True, img_path=r'C:\Users\...\my_conf_matrix.png')

Note 1:

y_true and y_pred could be:

  • flat lists
  • lists of flat lists
  • lists of nested lists.

Flat lists and lists of nested lists will be converted to lists of lists.

Note 2:

The __ at the end of some entities means that true and pred have the same entity name for the first token but the prediction is somewhat different from the true label. Examples:

>>> y_true = ['B-ORG', 'I-ORG', 'I-ORG']
>>> y_pred = ['B-ORG']

>>> y_true = ['B-ORG', 'I-ORG', 'I-ORG']
>>> y_pred = ['B-ORG', 'I-ORG', 'I-ORG', 'I-ORG', 'I-ORG']

>>> y_true = ['B-ORG', 'I-ORG', 'I-ORG']
>>> y_pred = ['B-ORG', 'I-PER']

>>> y_true = ['B-ORG', 'I-ORG', 'I-ORG']
>>> y_pred = ['I-ORG', 'I-PER']

Note 3:

The normalize argument could be:

  • None
  • 'true'
  • 'pred'
  • 'all'

Default is None.

Note 4:

In case of division by zero, the result will default to zero.

Note 5:

Parameters in function plot_confusion_matrix():

  • show: show the plot (default: True)
  • save: save the plot (default: False)
  • img_path: where to save the plot - e.g. r'C:\Users\User...\my_conf_matrix.png' (default: None - this means save the plot in current dir)

Installation

pip install nerval
conda install -c conda-forge nerval

License

MIT

Citation

@misc{nerval,
  title={{nerval}: Entity-level confusion matrix and classification report to evaluate Named Entity Recognition (NER) models.},
  url={https://github.com/mdadda/nerval},
  note={Software available from https://github.com/mdadda/nerval},
  author={Mariangela D'Addato},
  year={2022},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nerval-1.1.1.tar.gz (11.7 kB view details)

Uploaded Source

Built Distribution

nerval-1.1.1-py3-none-any.whl (10.7 kB view details)

Uploaded Python 3

File details

Details for the file nerval-1.1.1.tar.gz.

File metadata

  • Download URL: nerval-1.1.1.tar.gz
  • Upload date:
  • Size: 11.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.4

File hashes

Hashes for nerval-1.1.1.tar.gz
Algorithm Hash digest
SHA256 195f15e7294ca565537729468493fac15afbfe8ba63aa2dfedf29123bb3010dc
MD5 4aeedfb5b3c4fecb75e999d9c5e4753c
BLAKE2b-256 84759a42170fb47b8f3890678daa2bfc0ea84695600d8324b3ff983dcf2a96d1

See more details on using hashes here.

File details

Details for the file nerval-1.1.1-py3-none-any.whl.

File metadata

  • Download URL: nerval-1.1.1-py3-none-any.whl
  • Upload date:
  • Size: 10.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.4

File hashes

Hashes for nerval-1.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 070bdb664e5beb5abc9cee212863edbe7d2cafebc7f06606dbfa06716840aaf3
MD5 8c24a5f7283878ff29bbf5e39c25ab84
BLAKE2b-256 a2cd0fe9ccd6e15a2bde1bc460c2cfbe95b342a9f244cbdd43ceeff2c996c944

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page