Skip to main content

Self-nesting list-keyed dicts, multiple-defaults dicts, and TOML-style Array of Tables lists/dicts.

Project description

Nested Dicts

Python multiple-default dicts, list-keyed dicts, dotted-key dicts and Arrays of Tables classes.

pip install nested_dicts

Examples

DefaultsDictABC

Implement the choose_factory method on a subclass to select a factory. The returned factory is itself called with the key value (unlike collections.defaultdict.missing)

The following 4 examples all define a dictionary subclass d for which d == {'k': {'sub_dict_key': 'v'}} is True.

NestedDefaultsDict

>>> d = NestedDefaultsDict()
>>> d['k']['sub_dict_key'] = 'v'

ListKeyedDict

>>> d = ListKeyedDict.from_nested_dict({'k': {'sub_dict_key': 'v'}})
>>> d[['k', 'sub_dict_key']]
'v'

ListKeyedNestedDefaultsDict

>>> d = ListKeyedNestedDefaultsDict()
>>> d[['k', 'sub_dict_key']] = 'v'

DottedKeyedNestedDefaultsDict

>>> d = DottedKeyedNestedDefaultsDict()
>>> d['k.sub_dict_key'] = 'v'

TOMLTable

>>> from nested_dicts import TOMLTable
>>> t = TOMLTable()
>>> t['table-1'].update(
... key1 = "some string",
... key2 = 123)

>>> t['table-2'].update(
... key1 = "another string",
... key2 = 456)
>>> t
{'table-1': {'key1': 'some string', 'key2': 123}, 'table-2': {'key1': 'another string', 'key2': 456}}

Values in TOMLTable()s indexed with lists behave like Arrays of Tables, even when only read

>>> from nested_dicts import TOMLTable
>>> t = TOMLTable()
>>> t[['products']].update(
name = "Hammer",
sku = 738594937
)

>>> t[['products']]  # empty table within the array
{}
>>> t[['products']].update(
name = "Nail",
sku = 284758393,

color = "gray"
)


>>> t
{'products': [{'name': 'Hammer', 'sku': 738594937}, {}, {'name': 'Nail', 'sku': 284758393, 'color': 'gray'}]}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nested_dicts-0.0.0.tar.gz (9.6 kB view details)

Uploaded Source

Built Distribution

nested_dicts-0.0.0-py3-none-any.whl (6.7 kB view details)

Uploaded Python 3

File details

Details for the file nested_dicts-0.0.0.tar.gz.

File metadata

  • Download URL: nested_dicts-0.0.0.tar.gz
  • Upload date:
  • Size: 9.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.0

File hashes

Hashes for nested_dicts-0.0.0.tar.gz
Algorithm Hash digest
SHA256 42ba1f6d9a583308cb12528c0e849816dc751eefca347f0041f324e2e47ade2d
MD5 a7a4e4028c323b4cfcd5ac78b1e47128
BLAKE2b-256 ae8cd974236efa6004ae0dd9f9e77e3192664e9f16a33241b2cda907ccec5b99

See more details on using hashes here.

File details

Details for the file nested_dicts-0.0.0-py3-none-any.whl.

File metadata

File hashes

Hashes for nested_dicts-0.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 c2f5705f7e42495244cd86844872b30911a5aa29fbfdd2052165052e4ee62b96
MD5 a78fd6a651d4bc901adedb13f67e56d7
BLAKE2b-256 399bb520bcf06910c23fe6795f16972314effc712ba1292a689f534b1a8783b2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page