Transforms a nested dictionary or iterable into a Pandas DataFrame
Project description
Transforms a nested dictionary or iterable into a Pandas DataFrame.
Tested against Windows / Python 3.11 / Anaconda
pip install nested2dataframe
This function takes a nested dictionary or iterable and converts it into a Pandas DataFrame where each level of nesting
is represented as a separate column. The function is designed to handle dictionaries with varying levels of nesting,
and it can handle missing values, such as NaN or None, and fill them with the specified `tmpnone` value.
Parameters:
- it (dict or iterable): The input nested dictionary or iterable.
- key_prefix (str, optional): The prefix to use for naming the columns representing each level of nesting.
Defaults to "level_".
- tmpnone (any, optional): The value to replace NaN or None values in the DataFrame. Defaults to "NANVALUE".
- fillna (any, optional): The value to fill NaN values in the final DataFrame. Defaults to pd.NA.
- optimize_dtypes (bool, optional): Whether to optimize the data types of the DataFrame columns. If True,
it will attempt to reduce memory usage by changing data types where possible. Defaults to True.
Returns:
- pandas.DataFrame: A Pandas DataFrame where each level of nesting is represented as a separate column.
Example:
from nested2dataframe import nestediter2df
d7 = {
"results": [
{
"end_time": "2021-01-21",
"key": "q1",
"result_type": "multipleChoice",
"start_time": "2021-01-21",
"value": ["1"],
},
{
"end_time": "2021-01-21",
"key": "q2",
"result_type": "multipleChoice",
"start_time": "2021-01-21",
"value": ["False"],
},
{
"end_time": "2021-01-21",
"key": "q3",
"result_type": "multipleChoice",
"start_time": "2021-01-21",
"value": ["3"],
},
{
"end_time": "2021-01-21",
"key": "q4",
"result_type": "multipleChoice",
"start_time": "2021-01-21",
"value": ["3"],
},
]
}
df77 = nestediter2df(d7)
print(df77.to_string())
# level_1 level_2 level_3 end_time key result_type start_time 0
# 0 results 0 value 2021-01-21 q1 multipleChoice 2021-01-21 1
# 1 results 1 value 2021-01-21 q2 multipleChoice 2021-01-21 False
# 2 results 2 value 2021-01-21 q3 multipleChoice 2021-01-21 3
# 3 results 3 value 2021-01-21 q4 multipleChoice 2021-01-21 3
d1 = {
"level1": {
"t1": {
"s1": {"col1": 5, "col2": 4, "col3": 4, "col4": 9},
"s2": {"col1": 1, "col2": 5, "col3": 4, "col4": 8},
"s3": {"col1": 11, "col2": 8, "col3": 2, "col4": 9},
"s4": {"col1": 5, "col2": 4, "col3": 4, "col4": 9},
},
"t2": {
"s1": {"col1": 5, "col2": 4, "col3": 4, "col4": 9},
"s2": {"col1": 1, "col2": 5, "col3": 4, "col4": 8},
"s3": {"col1": 11, "col2": 8, "col3": 2, "col4": 9},
"s4": {"col1": 5, "col2": 4, "col3": 4, "col4": 9},
},
"t3": {
"s1": {"col1": 1, "col2": 2, "col3": 3, "col4": 4},
"s2": {"col1": 5, "col2": 6, "col3": 7, "col4": 8},
"s3": {"col1": 9, "col2": 10, "col3": 11, "col4": 12},
"s4": {"col1": 13, "col2": 14, "col3": 15, "col4": 16},
},
},
"level2": {
"t1": {
"s1": {"col1": 5, "col2": 4, "col3": 9, "col4": 9},
"s2": {"col1": 1, "col2": 5, "col3": 4, "col4": 5},
"s3": {"col1": 11, "col2": 8, "col3": 2, "col4": 13},
"s4": {"col1": 5, "col2": 4, "col3": 4, "col4": 20},
},
"t2": {
"s1": {"col1": 5, "col2": 4, "col3": 4, "col4": 9},
"s2": {"col1": 1, "col2": 5, "col3": 4, "col4": 8},
"s3": {"col1": 11, "col2": 8, "col3": 2, "col4": 9},
"s4": {"col1": 5, "col2": 4, "col3": 4, "col4": 9},
},
"t3": {
"s1": {"col1": 1, "col2": 2, "col3": 3, "col4": 4},
"s2": {"col1": 5, "col2": 6, "col3": 7, "col4": 8},
"s3": {"col1": 9, "col2": 10, "col3": 11, "col4": 12},
"s4": {"col1": 13, "col2": 14, "col3": 15, "col4": 16},
},
},
}
# level_1 level_2 level_3 col1 col2 col3 col4
# 0 level1 t1 s1 5 4 4 9
# 1 level1 t1 s2 1 5 4 8
# 2 level1 t1 s3 11 8 2 9
# 3 level1 t1 s4 5 4 4 9
# 4 level1 t2 s1 5 4 4 9
# 5 level1 t2 s2 1 5 4 8
# 6 level1 t2 s3 11 8 2 9
# 7 level1 t2 s4 5 4 4 9
# 8 level1 t3 s1 1 2 3 4
# 9 level1 t3 s2 5 6 7 8
# 10 level1 t3 s3 9 10 11 12
# 11 level1 t3 s4 13 14 15 16
# 12 level2 t1 s1 5 4 9 9
# 13 level2 t1 s2 1 5 4 5
# 14 level2 t1 s3 11 8 2 13
# 15 level2 t1 s4 5 4 4 20
# 16 level2 t2 s1 5 4 4 9
# 17 level2 t2 s2 1 5 4 8
# 18 level2 t2 s3 11 8 2 9
# 19 level2 t2 s4 5 4 4 9
# 20 level2 t3 s1 1 2 3 4
# 21 level2 t3 s2 5 6 7 8
# 22 level2 t3 s3 9 10 11 12
# 23 level2 t3 s4 13 14 15 16
d3 = [
{
"cb": ({"ID": 1, "Name": "A", "num": 50}, {"ID": 2, "Name": "A", "num": 68}),
},
{
"cb": ({"ID": 1, "Name": "A", "num": 50}, {"ID": 4, "Name": "A", "num": 67}),
},
{
"cb": (
{"ID": 1, "Name": "A", "num": 50},
{"ID": 6, "Name": "A", "num": 67, "bubu": {"bibi": 3}},
),
},
]
# level_1 level_2 end_time key result_type start_time value
# 0 results 0 2021-01-21 q1 multipleChoice 2021-01-21 1
# 1 results 1 2021-01-21 q2 multipleChoice 2021-01-21 False
# 2 results 2 2021-01-21 q3 multipleChoice 2021-01-21 3
# 3 results 3 2021-01-21 q4 multipleChoice 2021-01-21 x
df33 = nestediter2df(d3)
print(df33.to_string())
# level_1 level_2 level_3 level_4 ID Name num bibi
# 0 0 cb 0 NaN 1 A 50 <NA>
# 1 0 cb 1 NaN 2 A 68 <NA>
# 2 1 cb 0 NaN 1 A 50 <NA>
# 3 1 cb 1 NaN 4 A 67 <NA>
# 4 2 cb 0 NaN 1 A 50 <NA>
# 5 2 cb 1 bubu 6 A 67 3
d4 = {
"critic_reviews": [
{"review_critic": "XYZ", "review_score": 90},
{"review_critic": "ABC", "review_score": 90},
{"review_critic": "123", "review_score": 90},
],
"genres": ["Sports", "Golf"],
"score": 85,
"title": "Golf Simulator",
"url": "http://example.com/golf-simulator",
}
df44 = nestediter2df(d4)
print(df44.to_string())
# level_1 level_2 review_critic review_score 0 1 score title url
# 0 critic_reviews 0 XYZ 90 NaN NaN <NA> NaN NaN
# 1 critic_reviews 1 ABC 90 NaN NaN <NA> NaN NaN
# 2 critic_reviews 2 123 90 NaN NaN <NA> NaN NaN
# 3 genres <NA> <NA> <NA> Sports Golf <NA> NaN NaN
# 4 <NA> <NA> <NA> <NA> NaN NaN 85 Golf Simulator http://example.com/golf-simulator
d5 = {
"c1": {
"application_contacts": {"adress": "X", "email": "test@test.com"},
"application_details": {"email": None, "phone": None},
"employer": {"Name": "Nom", "email": "bibi@baba.com"},
"id": "1",
},
"c2": {
"application_contacts": {"adress": "Z", "email": None},
"application_details": {"email": "testy@test_a.com", "phone": None},
"employer": {"Name": "Nom", "email": None},
"id": "2",
},
"c3": {
"application_contacts": {"adress": "Y", "email": None},
"application_details": {"email": "testy@test_a.com", "phone": None},
"employer": {"Name": "Nom", "email": None},
"id": "3",
},
}
df55 = nestediter2df(d5)
print(df55.to_string())
# level_1 level_2 adress email phone Name id
# 0 c1 application_contacts X test@test.com <NA> NaN <NA>
# 1 c1 application_details <NA> <NA> <NA> NaN <NA>
# 2 c1 employer <NA> bibi@baba.com <NA> Nom <NA>
# 3 c1 <NA> <NA> <NA> <NA> NaN 1
# 4 c2 application_contacts Z <NA> <NA> NaN <NA>
# 5 c2 application_details <NA> testy@test_a.com <NA> NaN <NA>
# 6 c2 employer <NA> <NA> <NA> Nom <NA>
# 7 c2 <NA> <NA> <NA> <NA> NaN 2
# 8 c3 application_contacts Y <NA> <NA> NaN <NA>
# 9 c3 application_details <NA> testy@test_a.com <NA> NaN <NA>
# 10 c3 employer <NA> <NA> <NA> Nom <NA>
# 11 c3 <NA> <NA> <NA> <NA> NaN 3
d6 = {
"departure": [
{
"actual": None,
"actual_runway": None,
"airport": "Findel",
"delay": None,
"estimated": "2020-07-07T06:30:00+00:00",
"estimated_runway": None,
"gate": None,
"iata": "LUX",
"icao": "ELLX",
"scheduled": "2020-07-07T06:30:00+00:00",
"terminal": None,
"timezone": "Europe/Luxembourg",
},
{
"actual": None,
"actual_runway": None,
"airport": "Findel",
"delay": None,
"estimated": "2020-07-07T06:30:00+00:00",
"estimated_runway": None,
"gate": None,
"iata": "LUX",
"icao": "ELLX",
"scheduled": "2020-07-07T06:30:00+00:00",
"terminal": None,
"timezone": "Europe/Luxembourg",
},
{
"actual": None,
"actual_runway": None,
"airport": "Findel",
"delay": None,
"estimated": "2020-07-07T06:30:00+00:00",
"estimated_runway": None,
"gate": None,
"iata": "LUX",
"icao": "ELLX",
"scheduled": "2020-07-07T06:30:00+00:00",
"terminal": None,
"timezone": "Europe/Luxembourg",
},
]
}
df66 = nestediter2df(d6)
print(df66.to_string())
# level_1 level_2 actual actual_runway airport delay estimated estimated_runway gate iata icao scheduled terminal timezone
# 0 departure 0 <NA> <NA> Findel <NA> 2020-07-07T06:30:00+00:00 <NA> <NA> LUX ELLX 2020-07-07T06:30:00+00:00 <NA> Europe/Luxembourg
# 1 departure 1 <NA> <NA> Findel <NA> 2020-07-07T06:30:00+00:00 <NA> <NA> LUX ELLX 2020-07-07T06:30:00+00:00 <NA> Europe/Luxembourg
# 2 departure 2 <NA> <NA> Findel <NA> 2020-07-07T06:30:00+00:00 <NA> <NA> LUX ELLX 2020-07-07T06:30:00+00:00 <NA> Europe/Luxembourg
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
nested2dataframe-0.10.tar.gz
(26.3 kB
view details)
Built Distribution
File details
Details for the file nested2dataframe-0.10.tar.gz
.
File metadata
- Download URL: nested2dataframe-0.10.tar.gz
- Upload date:
- Size: 26.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1176195a5a4e3ded5030d24b2c4b85ffceed409a2f62b854fbc050df335796cd |
|
MD5 | 789c334c62d3226cb37b78dbd494dc3a |
|
BLAKE2b-256 | 80dfbaaab0fc6eec9ac5f77b1b75cfe694032bbe2928d99226e085b7d44f11af |
File details
Details for the file nested2dataframe-0.10-py3-none-any.whl
.
File metadata
- Download URL: nested2dataframe-0.10-py3-none-any.whl
- Upload date:
- Size: 26.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 951bd7c94851c0da0a527d2961437128caf8962b57fabdf95e33edd1ca5a780b |
|
MD5 | c7970306ae63c13a982c4647e097014d |
|
BLAKE2b-256 | eabcc08a1dc77ec8a2befb2ff8f1e7a90242bd7371fbdf7564ac13553d3021cc |