Skip to main content

A wrapper for conducting Nested Cross-Validation for Bayesian Optimized Linear Regularization

Project description

Nested Cross-Validation for Bayesian Optimized Linear Regularization

PyPI version License: GPL v3 Build Status Codacy Badge GitHub last commit

Description

A Python implementation that unifies Nested K-Fold Cross-Validation, Bayesian Hyperparameter Optimization, and Linear Regularization. Designed for rapid prototyping on small to mid-sized data sets (can be manipulated within memory). Quickly obtains high quality prediction results by abstracting away tedious hyperparameter tuning and implementation details in favor of usability and implementation speed. Bayesian Hyperparamter Optimization utilizes Tree Parzen Estimation (TPE) from the Hyperopt package. Linear Regularization can be conducted one of three ways. Select between Ridge, Lasso, or Elastic-Net. Useful where linear regression is applicable.

Features

  1. Consistent syntax across all Linear Regularization methods.
  2. Supported Linear Regularization methods: Ridge, Lasso, Elastic-Net.
  3. Returns custom object that includes performance metrics and plots.
  4. Developed for readability, maintainability, and future improvement.

Requirements

  1. Python 3
  2. NumPy
  3. Pandas
  4. MatPlotLib
  5. Seaborn
  6. Scikit-Learn
  7. Hyperopt

Installation

## install pypi release
pip install nestedhyperline

## install developer version
pip install git+https://github.com/nickkunz/nestedhyperline.git

Usage

## load libraries
from nestedhyperline import regressors
from sklearn import datasets
import pandas

## load data
housing_sklearn = datasets.load_boston()
housing = pandas.DataFrame(housing_sklearn.data, columns = housing_sklearn.feature_names)
housing['target'] = pandas.Series(housing_sklearn.target)

## conduct lasso regression
results = regressors.lasso_ncv_regressor(
    data = housing,
    y = 'target',
    loss = 'mse',
    k_inner = 3,
    k_outer = 3,
    n_evals = 300
)

## preview performance
results.error_mean()

## preview plots
results.plot_error_mean()
results.plot_lambda()
results.plot_regular()
results.plot_coef()

Examples

https://github.com/nickkunz/nestedhyperline/blob/master/examples/nestedhyperline_example_ridge.ipynb

License

© Nick Kunz, 2019. Licensed under the General Public License v3.0 (GPLv3).

Contributions

NestedHyperLine is open for improvements and maintenance. Your help is valued to make the package better for everyone.

References

Bergstra, J., Bardenet, R., Bengio, Y., Kegl, B. (2011). Algorithms for Hyper-Parameter Optimization. https://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf.

Bergstra, J., Yamins, D., Cox, D. D. (2013). Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures. Proceedings of the 30th International Conference on International Conference on Machine Learning. 28:I115–I123. http://proceedings.mlr.press/v28/bergstra13.pdf.

Hoerl, Arthur E., Kennard, Robert W. (1970). Ridge Regression: Biased Estimation for Nonorthogonal Problems. American Statistical Association and American Society for Quality Stable. 12(1):55-67. https://doi.org/10.1080/00401706.1970.10488634.

Tibshirani, R. (1996). Regression Shrinkage and Selection Via the Lasso. Journal of the Royal Statistical Society: Series B (Methodological). 58(1):267-288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x.

Zou, H., Hastie, T. (2005). Regularization and Variable Selection via the Elastic Net. Journal of the Royal Statistical Society: Series B (Statistical Methodology). 67: 301-320. https://doi.org/10.1111/j.1467-9868.2005.00503.x.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nestedhyperline-0.0.6.tar.gz (25.3 kB view details)

Uploaded Source

Built Distribution

nestedhyperline-0.0.6-py3-none-any.whl (28.4 kB view details)

Uploaded Python 3

File details

Details for the file nestedhyperline-0.0.6.tar.gz.

File metadata

  • Download URL: nestedhyperline-0.0.6.tar.gz
  • Upload date:
  • Size: 25.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.31.0 CPython/3.7.4

File hashes

Hashes for nestedhyperline-0.0.6.tar.gz
Algorithm Hash digest
SHA256 59b0b7fe493002c22861ed3b55ccd18857b366e1ea6f0de3f5264986531c3b92
MD5 46035c5ae33d572f1a16527d1ff9127d
BLAKE2b-256 c36d8e3dcd18cef189e496a07cc1fe8ecc4241e14084d294ebc56e581e108b7a

See more details on using hashes here.

File details

Details for the file nestedhyperline-0.0.6-py3-none-any.whl.

File metadata

  • Download URL: nestedhyperline-0.0.6-py3-none-any.whl
  • Upload date:
  • Size: 28.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.31.0 CPython/3.7.4

File hashes

Hashes for nestedhyperline-0.0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 b711d42bfbc2efd84ca15d1ab83580ef43f5b0b39ef272afd53c786c112f39a0
MD5 1c9aa0e9d0c1ce5d90aafb71c7998466
BLAKE2b-256 3701b59183dc72fbc50180f05463785d04bef7c649e5debdf52285452cd4b7ac

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page