Skip to main content

Ultralight 3D renderer of neural network architecture for TF/Keras Models

Project description

Netplot

A ultra-lightweight 3D renderer of the Tensorflow/Keras neural network architectures. This Library is working on Matplotlib visualization for now. In future the visualization can be moved to plotly for a more interactive visual of the neural network architecture.

Note: For now the rendering is working in Jupyter only Google Colab support is in works.

For more details visit NetPlot

Install with Pip

pip install netplot

Usage guide

from netplot import ModelPlot
import tensorflow as tf
import numpy as np
%matplotlib notebook
X_input = tf.keras.layers.Input(shape=(32,32,3))
X = tf.keras.layers.Conv2D(4, 3, activation='relu')(X_input)
X = tf.keras.layers.MaxPool2D(2,2)(X)
X = tf.keras.layers.Conv2D(16, 3, activation='relu')(X)
X = tf.keras.layers.MaxPool2D(2,2)(X)
X = tf.keras.layers.Conv2D(8, 3, activation='relu')(X)
X = tf.keras.layers.MaxPool2D(2,2)(X)
X = tf.keras.layers.Flatten()(X)
X = tf.keras.layers.Dense(10, activation='relu')(X)
X = tf.keras.layers.Dense(2, activation='softmax')(X)

model = tf.keras.models.Model(inputs=X_input, outputs=X)
modelplot = ModelPlot(model=model, grid=True, connection=True, linewidth=0.1)
modelplot.show()

Keras Model Summarized Keras Model Visualized

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

netplot-0.1.2.tar.gz (4.6 kB view details)

Uploaded Source

Built Distribution

netplot-0.1.2-py3-none-any.whl (4.6 kB view details)

Uploaded Python 3

File details

Details for the file netplot-0.1.2.tar.gz.

File metadata

  • Download URL: netplot-0.1.2.tar.gz
  • Upload date:
  • Size: 4.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for netplot-0.1.2.tar.gz
Algorithm Hash digest
SHA256 962c1fefcccfe5f5f2a6971afd1650420bce790e597418665766b2d55a8ac82d
MD5 a1e1883b3354eda941680e8cbace0b1f
BLAKE2b-256 f2324181dd9f03b0ac08dd72013525f130444fa02661b52dd5322e998c5ac341

See more details on using hashes here.

File details

Details for the file netplot-0.1.2-py3-none-any.whl.

File metadata

  • Download URL: netplot-0.1.2-py3-none-any.whl
  • Upload date:
  • Size: 4.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for netplot-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 f835d86d4d753a81cd41e9adcefbbc01b1b7d77375fc41648d2cdc1a566ed9a3
MD5 9e0229462bd538cb3feb296140f99916
BLAKE2b-256 be09ca1b1cece4a585ff9314998716326e4a50555bd94eb17cdcc41a3cf91b40

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page