A Python package to facilitate the development and simulation of biological networks in NEURON.
Project description
# NetPyNE (python package)
## Description
A Network development framework for Python-NEURON ([NetPyNE Documentation](http://neurosimlab.org/netpyne/))
NEURON/Python-based modularized framework for network simulations with MPI. Using this modularized structure, users can define different models (including cell types, populations, connectivities, etc.) just by modifying a single parameters file, and easily simulate then in NEURON. Additionally, the framework allows to store a single data file with the following:
1. model specifications (conn rules etc)
2. network instantiation (list of all cells, connections, etc)
3. simulation parameters/configuration (duration, dt, etc)
4. simulation outpuo (spikes, voltage traces etc)
The data file is available in Pickle, JSON and Matlab formats.
Three example model parameters are provided:
1. **HHTut.py** - simple tutorial model with a single Hodgkin-Huxley population and random connectivity
2. **HybridTut.py** - simple tutorial model with a Hodgkin-Huxley and an Izhikevich populations, with random connectivity
3. **M1.py** - mouse M1 model with 14 populations and cortical depth-dependent connectivity.
Additional details of the modelling framework can be found here:
* [NetPyNE Documentation](http://neurosimlab.org/netpyne/)
* [SFN'15 poster](http://neurosimlab.org/salvadord/sfn15-sal-final.pdf)
* [slides](https://drive.google.com/file/d/0B8v-knmZRjhtVl9BOFY2bzlWSWs/view?usp=sharing)
## Setup and execution
Requires NEURON with Python and MPI support.
1. Install package via `pip install netpyne`.
2. Create a model file (eg. model.py) where you import the netpyne package and set the parameters (you can use some of the parameter files incldued in the `examples` folder, eg. `HHTut.py`):
```
import HHTut
from netpyne import init
init.createAndRun(
simConfig = HHTut.simConfig,
netParams = HHTut.netParams)
```
3. Type `nrnivmodl mod`. This should create a directory called either i686 or x86_64, depending on your computer's architecture.
4. To run type `python model.py` (or `mpiexec -np [num_proc] nrniv -python -mpi model.py` for parallel simulation).
## Overview of files:
* **examples/**: Folder with examples.
* **doc/**: Folder with documentation source files.
* **netpyne/**: Folder with netpyne package files.
* **netpyne/init.py**: Main executable; calls functions from other modules. Sets what parameter file to use.
* **netpyne/framework.py**: Contains all the model shared variables and modules. It is imported as "s" from all other file, so that any variable or module can be referenced from any file using s.varName
* **netpyne/sim.py**: Simulation control functions (eg. runSim).
* **netpyne/network.py**: Network related functions (eg. createCells)
* **netpyne/cell.py**: contains cell and population classes to create cells based on the parameters.
* **netpyne/analysis.py**: functions to visualize and analyse data
* **netpyne/default.py**: default network and simulation parameters
* **netpyne/utils.py**: utility python methods (eg. to import cell parameters)
For further information please contact: salvadordura@gmail.com
## Description
A Network development framework for Python-NEURON ([NetPyNE Documentation](http://neurosimlab.org/netpyne/))
NEURON/Python-based modularized framework for network simulations with MPI. Using this modularized structure, users can define different models (including cell types, populations, connectivities, etc.) just by modifying a single parameters file, and easily simulate then in NEURON. Additionally, the framework allows to store a single data file with the following:
1. model specifications (conn rules etc)
2. network instantiation (list of all cells, connections, etc)
3. simulation parameters/configuration (duration, dt, etc)
4. simulation outpuo (spikes, voltage traces etc)
The data file is available in Pickle, JSON and Matlab formats.
Three example model parameters are provided:
1. **HHTut.py** - simple tutorial model with a single Hodgkin-Huxley population and random connectivity
2. **HybridTut.py** - simple tutorial model with a Hodgkin-Huxley and an Izhikevich populations, with random connectivity
3. **M1.py** - mouse M1 model with 14 populations and cortical depth-dependent connectivity.
Additional details of the modelling framework can be found here:
* [NetPyNE Documentation](http://neurosimlab.org/netpyne/)
* [SFN'15 poster](http://neurosimlab.org/salvadord/sfn15-sal-final.pdf)
* [slides](https://drive.google.com/file/d/0B8v-knmZRjhtVl9BOFY2bzlWSWs/view?usp=sharing)
## Setup and execution
Requires NEURON with Python and MPI support.
1. Install package via `pip install netpyne`.
2. Create a model file (eg. model.py) where you import the netpyne package and set the parameters (you can use some of the parameter files incldued in the `examples` folder, eg. `HHTut.py`):
```
import HHTut
from netpyne import init
init.createAndRun(
simConfig = HHTut.simConfig,
netParams = HHTut.netParams)
```
3. Type `nrnivmodl mod`. This should create a directory called either i686 or x86_64, depending on your computer's architecture.
4. To run type `python model.py` (or `mpiexec -np [num_proc] nrniv -python -mpi model.py` for parallel simulation).
## Overview of files:
* **examples/**: Folder with examples.
* **doc/**: Folder with documentation source files.
* **netpyne/**: Folder with netpyne package files.
* **netpyne/init.py**: Main executable; calls functions from other modules. Sets what parameter file to use.
* **netpyne/framework.py**: Contains all the model shared variables and modules. It is imported as "s" from all other file, so that any variable or module can be referenced from any file using s.varName
* **netpyne/sim.py**: Simulation control functions (eg. runSim).
* **netpyne/network.py**: Network related functions (eg. createCells)
* **netpyne/cell.py**: contains cell and population classes to create cells based on the parameters.
* **netpyne/analysis.py**: functions to visualize and analyse data
* **netpyne/default.py**: default network and simulation parameters
* **netpyne/utils.py**: utility python methods (eg. to import cell parameters)
For further information please contact: salvadordura@gmail.com
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
netpyne-0.3.1.tar.gz
(176.4 kB
view details)
Built Distribution
netpyne-0.3.1-py2-none-any.whl
(30.9 kB
view details)
File details
Details for the file netpyne-0.3.1.tar.gz
.
File metadata
- Download URL: netpyne-0.3.1.tar.gz
- Upload date:
- Size: 176.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3161b58d72600153aedd9dc260f187f26536a83441d61045ba6579dee5ea404f |
|
MD5 | 89395952086cc3fcdea13594a36cd669 |
|
BLAKE2b-256 | 87ad902c52fb895f0dd67c4440877dfd694f080b65614f8493330180663dd05a |
File details
Details for the file netpyne-0.3.1-py2-none-any.whl
.
File metadata
- Download URL: netpyne-0.3.1-py2-none-any.whl
- Upload date:
- Size: 30.9 kB
- Tags: Python 2
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f8106a0d71aa873424e999b844a4583fa567d111eaded07a110613357f21e267 |
|
MD5 | e63927ccc8b3ef3c50a3d556639330db |
|
BLAKE2b-256 | 046021b3bf7b3d3ad8e73e672364269181aa7f7bfff11f6ce9470a3ac0d1f731 |