Skip to main content

A Python package to facilitate the development and simulation of biological networks in NEURON.

Project description

# NetPyNE (python package)
## Description
A Python package to facilitate the development and simulation of biological networks in NEURON ([NetPyNE Documentation](http://neurosimlab.org/netpyne/))

NEURON/Python-based modularized framework for network simulations with MPI. Using this modularized structure, users can define different models (including cell types, populations, connectivities, etc.) just by modifying a single parameters file, and easily simulate then in NEURON. Additionally, the framework allows to store a single data file with the following:

1. model specifications (conn rules etc)
2. network instantiation (list of all cells, connections, etc)
3. simulation parameters/configuration (duration, dt, etc)
4. simulation output (spikes, voltage traces etc)

The data file is available in Pickle, JSON and Matlab formats.

Three example model parameters are provided:

1. **HHTut.py** - simple tutorial model with a single Hodgkin-Huxley population and random connectivity
2. **HybridTut.py** - simple tutorial model with a Hodgkin-Huxley and an Izhikevich populations, with random connectivity
3. **M1.py** - mouse M1 model with 14 populations and cortical depth-dependent connectivity.

Additional details of the modelling framework can be found here:

* [NetPyNE Documentation](http://neurosimlab.org/netpyne/)
* [SFN'15 poster](http://neurosimlab.org/salvadord/sfn15-sal-final.pdf)
* [slides](https://drive.google.com/file/d/0B8v-knmZRjhtVl9BOFY2bzlWSWs/view?usp=sharing)


## Setup and execution

Requires NEURON with Python and MPI support.

1. Install package via `pip install netpyne`.

2. Create a model file (eg. model.py) where you import the netpyne package and set the parameters (you can use some of the parameter files incldued in the `examples` folder, eg. `HHTut.py`):

```
import HHTut
from netpyne import init
init.createAndRun(
simConfig = HHTut.simConfig,
netParams = HHTut.netParams)
```

3. Type `nrnivmodl mod`. This should create a directory called either i686 or x86_64, depending on your computer's architecture.

4. To run type `python model.py` (or `mpiexec -np [num_proc] nrniv -python -mpi model.py` for parallel simulation).

## Overview of files:

* **examples/**: Folder with examples.

* **doc/**: Folder with documentation source files.

* **netpyne/**: Folder with netpyne package files.

* **netpyne/init.py**: Main executable; calls functions from other modules. Sets what parameter file to use.

* **netpyne/framework.py**: Contains all the model shared variables and modules. It is imported as "s" from all other file, so that any variable or module can be referenced from any file using s.varName

* **netpyne/sim.py**: Simulation control functions (eg. runSim).

* **netpyne/network.py**: Network related functions (eg. createCells)

* **netpyne/cell.py**: contains cell and population classes to create cells based on the parameters.

* **netpyne/analysis.py**: functions to visualize and analyse data

* **netpyne/default.py**: default network and simulation parameters

* **netpyne/utils.py**: utility python methods (eg. to import cell parameters)



For further information please contact: salvadordura@gmail.com

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

netpyne-0.3.2.tar.gz (176.4 kB view details)

Uploaded Source

Built Distribution

netpyne-0.3.2-py2-none-any.whl (31.0 kB view details)

Uploaded Python 2

File details

Details for the file netpyne-0.3.2.tar.gz.

File metadata

  • Download URL: netpyne-0.3.2.tar.gz
  • Upload date:
  • Size: 176.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for netpyne-0.3.2.tar.gz
Algorithm Hash digest
SHA256 fb0a80c69e07f1f837b95358a8d5ff6f3ed914d6d19f4c627fb10b8d011281e4
MD5 635db197e63ac37064cb599c5abe4c1f
BLAKE2b-256 af0304b4390d46700d2c7a973e3d3c0d4395a1d5f12c3f463a30a1e2c1ac3fd3

See more details on using hashes here.

File details

Details for the file netpyne-0.3.2-py2-none-any.whl.

File metadata

File hashes

Hashes for netpyne-0.3.2-py2-none-any.whl
Algorithm Hash digest
SHA256 4d0fa2b8671bf38f921347c0350e47da058c9732897a18d804a69e16f0b6bd6c
MD5 7c96cd1624932fb18aa51754f2c33217
BLAKE2b-256 6c5ab3b4d94059d7bb81abcd6395058773033421bcb6fb509d1e1c5859943587

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page