Skip to main content

A Python package to facilitate the development and simulation of biological networks in NEURON.

Project description

# NetPyNE (python package)
## Description
A Network development framework for Python-NEURON ([NetPyNE Documentation](http://neurosimlab.org/netpyne/))

NEURON/Python-based modularized framework for network simulations with MPI. Using this modularized structure, users can define different models (including cell types, populations, connectivities, etc.) just by modifying a single parameters file, and easily simulate then in NEURON. Additionally, the framework allows to store a single data file with the following:

1. model specifications (conn rules etc)
2. network instantiation (list of all cells, connections, etc)
3. simulation parameters/configuration (duration, dt, etc)
4. simulation outpuo (spikes, voltage traces etc)

The data file is available in Pickle, JSON and Matlab formats.

Three example model parameters are provided:

1. **HHTut.py** - simple tutorial model with a single Hodgkin-Huxley population and random connectivity
2. **HybridTut.py** - simple tutorial model with a Hodgkin-Huxley and an Izhikevich populations, with random connectivity
3. **M1.py** - mouse M1 model with 14 populations and cortical depth-dependent connectivity.

Additional details of the modelling framework can be found here:

* [NetPyNE Documentation](http://neurosimlab.org/netpyne/)
* [SFN'15 poster](http://neurosimlab.org/salvadord/sfn15-sal-final.pdf)
* [slides](https://drive.google.com/file/d/0B8v-knmZRjhtVl9BOFY2bzlWSWs/view?usp=sharing)


## Setup and execution

Requires NEURON with Python and MPI support.

1. Make sure the `netpyne` package is in the path ($PYTHONPATH)

2. Create a model file where you import the netpyne package and set the parameters, eg. model.py:

```
from netpyne.params import HHTut
from netpyne import init
init.createAndRun(
simConfig = HHTut.simConfig,
netParams = HHTut.netParams)
```

3. Type `nrnivmodl mod`. This should create a directory called either i686 or x86_64, depending on your computer's architecture.

4. To run type `python model.py` (or `mpiexec -np [num_proc] nrniv -python -mpi model.py` for parallel simulation).

## Overview of files:

* **examples/**: Folder with examples.

* **doc/**: Folder with documentation source files.

* **netpyne/**: Folder with netpyne package files.

* **netpyne/init.py**: Main executable; calls functions from other modules. Sets what parameter file to use.

* **netpyne/framework.py**: Contains all the model shared variables and modules. It is imported as "s" from all other file, so that any variable or module can be referenced from any file using s.varName

* **netpyne/sim.py**: Simulation control functions (eg. runSim).

* **netpyne/network.py**: Network related functions (eg. createCells)

* **netpyne/cell.py**: contains cell and population classes to create cells based on the parameters.

* **netpyne/analysis.py**: functions to visualize and analyse data

* **netpyne/default.py**: default network and simulation parameters

* **netpyne/utils.py**: utility python methods (eg. to import cell parameters)



For further information please contact: salvadordura@gmail.com

Project details


Release history Release notifications | RSS feed

This version

0.3

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

netpyne-0.3.tar.gz (209.9 kB view details)

Uploaded Source

Built Distribution

netpyne-0.3-py2-none-any.whl (30.5 kB view details)

Uploaded Python 2

File details

Details for the file netpyne-0.3.tar.gz.

File metadata

  • Download URL: netpyne-0.3.tar.gz
  • Upload date:
  • Size: 209.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for netpyne-0.3.tar.gz
Algorithm Hash digest
SHA256 111177f953426cc6fe80e5717ae680c13157fe9fbb727c325479795f93bb9701
MD5 d86541633d636d9597326b933b83f412
BLAKE2b-256 e33d323b4422fe57c2e03d5dff8b6b85d14dece23f3ea0e28c76d9bcf5062346

See more details on using hashes here.

File details

Details for the file netpyne-0.3-py2-none-any.whl.

File metadata

File hashes

Hashes for netpyne-0.3-py2-none-any.whl
Algorithm Hash digest
SHA256 2c78f98d5d42edd8792905527b82b1567832d1cc2dd8c85b162355b57e02622f
MD5 c7c4c419319e020be51296a5e359a246
BLAKE2b-256 bea873289f456561d6bd5c2ba8f60e2ce54bccdbf953849a334840fc28a75e9c

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page