Skip to main content

A Python package to facilitate the development and simulation of biological networks in NEURON.

Project description

# NetPyNE (python package)
## Description
A Python package to facilitate the development and simulation of biological networks in NEURON ([NetPyNE Documentation](http://neurosimlab.org/netpyne/))

NEURON/Python-based modularized framework for network simulations with MPI. Using this modularized structure, users can define different models (including cell types, populations, connectivities, etc.) just by modifying a single parameters file, and easily simulate then in NEURON. Additionally, the framework allows to store a single data file with the following:

1. model specifications (conn rules etc)
2. network instantiation (list of all cells, connections, etc)
3. simulation parameters/configuration (duration, dt, etc)
4. simulation output (spikes, voltage traces etc)

The data file is available in Pickle, JSON and Matlab formats.

Three example model parameters are provided:

1. **HHTut.py** - simple tutorial model with a single Hodgkin-Huxley population and random connectivity
2. **HybridTut.py** - simple tutorial model with a Hodgkin-Huxley and an Izhikevich populations, with random connectivity
3. **M1.py** - mouse M1 model with 14 populations and cortical depth-dependent connectivity.

Additional details of the modelling framework can be found here:

* [NetPyNE Documentation](http://neurosimlab.org/netpyne/)
* [SFN'15 poster](http://neurosimlab.org/salvadord/sfn15-sal-final.pdf)
* [slides](https://drive.google.com/file/d/0B8v-knmZRjhtVl9BOFY2bzlWSWs/view?usp=sharing)


## Setup and execution

Requires NEURON with Python and MPI support.

1. Install package via `pip install netpyne`.

2. Create a model file (eg. model.py) where you import the netpyne package and set the parameters (you can use some of the parameter files incldued in the `examples` folder, eg. `HHTut.py`):

```
import HHTut
from netpyne import init
init.createAndSimulate(
simConfig = HHTut.simConfig,
netParams = HHTut.netParams)
```

3. Type `nrnivmodl mod`. This should create a directory called either i686 or x86_64, depending on your computer's architecture.

4. To run type `python model.py` (or `mpiexec -np [num_proc] nrniv -python -mpi model.py` for parallel simulation).

## Overview of files:

* **examples/**: Folder with examples.

* **doc/**: Folder with documentation source files.

* **netpyne/**: Folder with netpyne package files.

* **netpyne/init.py**: Main executable; calls functions from other modules. Sets what parameter file to use.

* **netpyne/framework.py**: Contains all the model shared variables and modules. It is imported as "s" from all other file, so that any variable or module can be referenced from any file using s.varName

* **netpyne/sim.py**: Simulation control functions (eg. runSim).

* **netpyne/network.py**: Network related functions (eg. createCells)

* **netpyne/cell.py**: contains cell and population classes to create cells based on the parameters.

* **netpyne/analysis.py**: functions to visualize and analyse data

* **netpyne/default.py**: default network and simulation parameters

* **netpyne/utils.py**: utility python methods (eg. to import cell parameters)



For further information please contact: salvadordura@gmail.com

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

netpyne-0.4.1.tar.gz (209.7 kB view details)

Uploaded Source

Built Distribution

netpyne-0.4.1-py2-none-any.whl (36.7 kB view details)

Uploaded Python 2

File details

Details for the file netpyne-0.4.1.tar.gz.

File metadata

  • Download URL: netpyne-0.4.1.tar.gz
  • Upload date:
  • Size: 209.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for netpyne-0.4.1.tar.gz
Algorithm Hash digest
SHA256 a9afcce365304254ba7faedbc0e951ed6f030a4b6d55700b9fd68c475c189d3e
MD5 016bf0ee8801e77df188fe0f686a44e9
BLAKE2b-256 8c6014ef96ff81a0a63493c395ba0c773dc1886df73aaeff4a06ccb977855c43

See more details on using hashes here.

File details

Details for the file netpyne-0.4.1-py2-none-any.whl.

File metadata

File hashes

Hashes for netpyne-0.4.1-py2-none-any.whl
Algorithm Hash digest
SHA256 30462420c16cc481bdbde6b7fd917833bc8cdcf3314347065b9e1fb1e920aa12
MD5 ce52f2644df9fc1758046d3e6e1a5350
BLAKE2b-256 3e8a2c30c93f88eb5592da48a0217e716cacc0a211cc49d3dbac26c70cb48109

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page