Skip to main content

A Python package to develop, simulate and analyse biological neuronal networks in NEURON.

Project description

# NetPyNE (python package)
## Description
A Python package to facilitate the development and simulation of biological networks in NEURON ([NetPyNE Documentation](http://neurosimlab.org/netpyne/))

NEURON/Python-based modularized framework for network simulations with MPI. Using this modularized structure, users can define different models (including cell types, populations, connectivities, etc.) just by modifying a single parameters file, and easily simulate then in NEURON. Additionally, the framework allows to store a single data file with the following:

1. model specifications (conn rules etc)
2. network instantiation (list of all cells, connections, etc)
3. simulation parameters/configuration (duration, dt, etc)
4. simulation output (spikes, voltage traces etc)

The data file is available in Pickle, JSON and Matlab formats.

Several example model parameters are provided, including:

1. **[HHTut.py](examples/HHTut/HHTut.py)** - simple tutorial model with a single Hodgkin-Huxley population and random connectivity
2. **[HybridTut.py](examples/HybridTut/HybridTut.py)** - simple tutorial model with a Hodgkin-Huxley and an Izhikevich populations, with random connectivity
3. **[M1.py](examples/M1/M1.py)** - mouse M1 model with 14 populations and cortical depth-dependent connectivity.

Additional details of the modelling framework can be found here:

* [NetPyNE Documentation](http://neurosimlab.org/netpyne/)
* [SFN'15 poster](http://neurosimlab.org/salvadord/sfn15-sal-final.pdf)
* [slides](https://drive.google.com/file/d/0B8v-knmZRjhtVl9BOFY2bzlWSWs/view?usp=sharing)


## Setup and execution

Requires NEURON with Python and MPI support.

1. Install package via `pip install netpyne`.

2. Create a model file (eg. model.py) where you import the netpyne package and set the parameters (you can use some of the parameter files included in the `examples` folder, e.g. `HHTut.py`):

```
import HHTut
from netpyne import sim
sim.createAndSimulate(
simConfig = HHTut.simConfig,
netParams = HHTut.netParams)
```

3. Type `nrnivmodl mod`. This should create a directory called either i686 or x86_64, depending on your computer's architecture.

4. To run type `python model.py` (or `mpiexec -np [num_proc] nrniv -python -mpi model.py` for parallel simulation).

5. The example mentioned above can be run with:

```
cd examples/HHTut
python HHTut_run.py
```


## Overview of files:

* **examples/**: Folder with examples.

* **doc/**: Folder with documentation source files.

* **netpyne/**: Folder with netpyne package files.

* **netpyne/sim.py**: Contains all the model shared variables and modules. It is imported as "sim" from all other file, so that any variable or module can be referenced from any file using sim.varName

* **netpyne/simFunc.py**: Simulation control functions (eg. runSim).

* **netpyne/network.py**: Network related functions (eg. createCells)

* **netpyne/cell.py**: contains cell and population classes to create cells based on the parameters.

* **netpyne/analysis.py**: functions to visualize and analyse data

* **netpyne/default.py**: default network and simulation parameters

* **netpyne/utils.py**: utility python methods (eg. to import cell parameters)



For further information please contact: salvadordura@gmail.com

Project details


Release history Release notifications | RSS feed

This version

0.5.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

netpyne-0.5.1.tar.gz (6.3 MB view details)

Uploaded Source

Built Distribution

netpyne-0.5.1-py2-none-any.whl (56.3 kB view details)

Uploaded Python 2

File details

Details for the file netpyne-0.5.1.tar.gz.

File metadata

  • Download URL: netpyne-0.5.1.tar.gz
  • Upload date:
  • Size: 6.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for netpyne-0.5.1.tar.gz
Algorithm Hash digest
SHA256 4fe0585e11b432b5c5027ff73170234476e65e54f63b2d92349b7019c7a720c9
MD5 09e51370d0eda4786fbdd6b136bde7b6
BLAKE2b-256 50c3af2a102ee61035f7c5c6c719e4cd7d2909ea99c85bd626c5d9277619e2a0

See more details on using hashes here.

File details

Details for the file netpyne-0.5.1-py2-none-any.whl.

File metadata

File hashes

Hashes for netpyne-0.5.1-py2-none-any.whl
Algorithm Hash digest
SHA256 322c1cc37a6999705dced599446187cbb8d69a1b531f71be5cb2c1294b465123
MD5 89b4ebdb7b5a67faf3a30db7d9b20193
BLAKE2b-256 c27abd82f04cd482b9a9feb722399833c6492b87e87fd6e311258f3487f9ebec

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page