Skip to main content

A Python package to develop, simulate and analyse biological neuronal networks in NEURON.

Project description

# NetPyNE (python package)
## Description
A Python package to facilitate the development and simulation of biological networks in NEURON ([NetPyNE Documentation](http://neurosimlab.org/netpyne/))

NEURON/Python-based modularized framework for network simulations with MPI. Using this modularized structure, users can define different models (including cell types, populations, connectivities, etc.) just by modifying a single parameters file, and easily simulate then in NEURON. Additionally, the framework allows to store a single data file with the following:

1. model specifications (conn rules etc)
2. network instantiation (list of all cells, connections, etc)
3. simulation parameters/configuration (duration, dt, etc)
4. simulation output (spikes, voltage traces etc)

The data file is available in Pickle, JSON and Matlab formats.

Several example model parameters are provided, including:

1. **[HHTut.py](examples/HHTut/HHTut.py)** - simple tutorial model with a single Hodgkin-Huxley population and random connectivity
2. **[HybridTut.py](examples/HybridTut/HybridTut.py)** - simple tutorial model with a Hodgkin-Huxley and an Izhikevich populations, with random connectivity
3. **[M1.py](examples/M1/M1.py)** - mouse M1 model with 14 populations and cortical depth-dependent connectivity.

Additional details of the modelling framework can be found here:

* [NetPyNE Documentation](http://neurosimlab.org/netpyne/)
* [SFN'15 poster](http://neurosimlab.org/salvadord/sfn15-sal-final.pdf)
* [slides](https://drive.google.com/file/d/0B8v-knmZRjhtVl9BOFY2bzlWSWs/view?usp=sharing)


## Setup and execution

Requires NEURON with Python and MPI support.

1. Install package via `pip install netpyne`.

2. Create a model file (eg. model.py) where you import the netpyne package and set the parameters (you can use some of the parameter files included in the `examples` folder, e.g. `HHTut.py`):

```
import HHTut
from netpyne import sim
sim.createAndSimulate(
simConfig = HHTut.simConfig,
netParams = HHTut.netParams)
```

3. Type `nrnivmodl mod`. This should create a directory called either i686 or x86_64, depending on your computer's architecture.

4. To run type `python model.py` (or `mpiexec -np [num_proc] nrniv -python -mpi model.py` for parallel simulation).

5. The example mentioned above can be run with:

```
cd examples/HHTut
python HHTut_run.py
```


## Overview of files:

* **examples/**: Folder with examples.

* **doc/**: Folder with documentation source files.

* **netpyne/**: Folder with netpyne package files.

* **netpyne/sim.py**: Contains all the model shared variables and modules. It is imported as "sim" from all other file, so that any variable or module can be referenced from any file using sim.varName

* **netpyne/simFunc.py**: Simulation control functions (eg. runSim).

* **netpyne/network.py**: Network related functions (eg. createCells)

* **netpyne/cell.py**: contains cell and population classes to create cells based on the parameters.

* **netpyne/analysis.py**: functions to visualize and analyse data

* **netpyne/default.py**: default network and simulation parameters

* **netpyne/utils.py**: utility python methods (eg. to import cell parameters)



For further information please contact: salvadordura@gmail.com

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

netpyne-0.6.2-py2-none-any.whl (73.7 kB view details)

Uploaded Python 2

File details

Details for the file netpyne-0.6.2-py2-none-any.whl.

File metadata

File hashes

Hashes for netpyne-0.6.2-py2-none-any.whl
Algorithm Hash digest
SHA256 4b4096745028dffaa95d830a74e2eb01a3c1136278ca185213b31150765d2db1
MD5 03a92f82828294b0b092ba9c9fac2fa4
BLAKE2b-256 22fb254ebe2f23c1bb0bac67428f43ebcd9bfcba23b5e81a91ca93626d73004d

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page