This is a pre-production deployment of Warehouse. Changes made here affect the production instance of PyPI (pypi.python.org).
Help us improve Python packaging - Donate today!

Econometric methods for the analysis of networks.

Project Description

netrics: a Python 2.7 package for econometric analysis of networks

by Bryan S. Graham, UC - Berkeley, e-mail: bgraham@econ.berkeley.edu

This package includes a Python 2.7 implementation of the two econometric network formation models introduced in Graham (2014, NBER).

This package is offered “as is”, without warranty, implicit or otherwise. While I would appreciate bug reports, suggestions for improvements and so on, I am unable to provide any meaningful user-support. Please e-mail me at bgraham@econ.berkeley.edu

Please cite both the code and the underlying source articles listed below when using this code in your research.

A simple example script to get started is:

>>>> # Import numpy in order to correctly read test data
>>>> import numpy as np

>>>> # Import urllib in order to download test data from Github repo
>>>> import urllib

>>>> # Append location of netrics module base directory to system path
>>>> # NOTE: only required if permanent install not made
>>>> # NOTE: edit path to location on netrics package on local machine
>>>> import sys
>>>> sys.path.append('/Users/bgraham/Dropbox/Sites/software/netrics/')

>>>> # Load netrics module
>>>> import netrics as netrics

>>>> # Download Nyakatoke test dataset from GitHub
>>>> download =  '/Users/bgraham/Dropbox/' # Edit to location on your machine
>>>> url = 'https://github.com/bryangraham/netrics/blob/master/Notebooks/Nyakatoke_Example.npz?raw=true'
>>>> urllib.urlretrieve(url, download + "Nyakatoke_Example.npz")

>>>> # Open dataset
>>>> NyakatokeTestDataset = np.load(download + "Nyakatoke_Example.npz")

>>>> # Extract adjacency matrix
>>>> D = NyakatokeTestDataset['D']

>>>> # Initialize list of dyad-specific covariates as elements
>>>> # W = [W0, W1, W2,...WK-1]
>>>> W = []

>>>> # Initialize list with covariate labels
>>>> cov_names = []

>>>> # Construct list of regressor matrices and corresponding variable names
>>>> for matrix in NyakatokeTestDataset.files:
>>>>     if matrix != 'D':
>>>>         W.append(NyakatokeTestDataset[matrix])
>>>>         cov_names.append(matrix)

>>>> # Apply tetrad logit procedure to dataset
>>>> [beta_TL, vcov_beta_TL, tetrad_frac_TL, success] = \
         netrics.tetrad_logit(D, W, dtcon=None, silent=False, W_names=cov_names)

CODE CITATION

Graham, Bryan S. (2016). “netrics: a Python 2.7 package for econometric analysis of
networks,” (Version 0.0.1) [Computer program]. Available at https://github.com/bryangraham/netrics (Accessed 04 September 2016)

PAPER CITATIONS

Graham, Bryan S. (2014). “An econometric model of link formation with degree
heterogeneity,” NBER Working Paper No. w20341.
Release History

Release History

This version
History Node

0.0.4

History Node

0.0.3

History Node

0.0.2

History Node

0.0.1

Download Files

Download Files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
netrics-0.0.4.tar.gz (15.7 kB) Copy SHA256 Checksum SHA256 Source Jun 20, 2017

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting