python client for the NetsPresso
Project description
NetsPresso
Installation
To install this package, please use Python 3.8
or higher.
Install from Source:
git clone https://github.com/nota-github/netspresso-python.git
pip install -e .
Install from PyPi (Recommended):
To be updated later.
Quickstart
Login
Please enter your email and password to log in to your NetsPresso account.
from netspresso.compressor import ModelCompressor
compressor = ModelCompressor(email="YOUR_EMAIL", password="YOUR_PASSWORD")
Model
Upload
from netspresso.compressor import Task, Framework
UPLOAD_MODEL_NAME = "tensorflow_keras_mv1"
TASK = Task.IMAGE_CLASSIFICATION
FRAMEWORK = Framework.TENSORFLOW_KERAS
UPLOAD_MODEL_PATH = "./mobilenetv1.h5"
INPUT_LAYERS = [{"batch": 1, "channel": 3, "dimension": [32, 32]}]
model = compressor.upload_modfel(
model_name=UPLOAD_MODEL_NAME,
task=TASK,
framework=FRAMEWORK,
file_path=UPLOAD_MODEL_PATH,
input_layers=INPUT_LAYERS,
)
print(f"model_id: {model.model_id}")
Get
model = compressor.get_model(model_id="UPLOADED_MODEL_ID")
print(f"model_id: {model.model_id}")
Compression
Manual
# Select Compression Method
COMPRESSION_METHOD = CompressionMethod.PR_L2.value
compression_1 = compressor.select_compression_method(
model=model,
compression_method=COMPRESSION_METHOD
)
print(f"compression method: {compression_1.compression_method}")
print(f"available layers: {compression_1.available_layers}")
# Set Compression Params
for available_layer in compression_1.available_layers[:5]:
available_layer.values = [0.2]
# Compress Model
COMPRESSED_MODEL_NAME = "l2norm_manual"
OUTPUT_PATH = "./mobilenetv1_cifar100_manual.h5"
compressed_model = compressor.compress_model(
compression=compression_1,
model_name=COMPRESSED_MODEL_NAME,
output_path=OUTPUT_PATH,
)
print(f"compressed model id: {compressed_model.model_id}")
Recommendation
COMPRESSED_MODEL_NAME = "recommendation_model"
COMPRESSION_METHOD = CompressionMethod.PR_L2
RECOMMENDATION_METHOD = RecommendationMethod.LAMP
RECOMMENDATION_RATIO = 0.6
OUTPUT_PATH = "./mobilenetv1_cifar100_recommendation.h5"
compressed_model = compressor.recommendation_compression(
model=model,
model_name=COMPRESSED_MODEL_NAME,
compression_method=COMPRESSION_METHOD,
recommendation_method=RECOMMENDATION_METHOD,
recommendation_ratio=RECOMMENDATION_RATIO,
output_path=OUTPUT_PATH,
)
print(f"compressed model id: {compressed_model.model_id}")
Automatic
AUTO_COMPRESSED_MODEL_NAME = "test_auto_compress"
OUTPUT_PATH = "./mobilenetv1_cifar100_automatic.h5"
COMPRESSION_RATIO = 0.5
compressed_model = compressor.automatic_compression(
model=model,
model_name=AUTO_COMPRESSED_MODEL_NAME,
compression_ratio=COMPRESSION_RATIO,
output_path=OUTPUT_PATH,
)
print(f"compressed model id: {compressed_model.model_id}")
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distribution
File details
Details for the file netspresso-0.1.3-py3-none-any.whl
.
File metadata
- Download URL: netspresso-0.1.3-py3-none-any.whl
- Upload date:
- Size: 19.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d477496f36d39d03fde4390965d819c2017834c72620ffefe03f90f71bfbe9ed |
|
MD5 | 15345a5e56906f75aa1ca2e0ca34bd5c |
|
BLAKE2b-256 | 51c5e93570de56341a5dc7a73be2c1f65bab7ad8b23409c550a28850d525412a |