Skip to main content

A Python Library for Applied Mathematics in Physical Sciences.

Project description

Neumann - A Python Library for Applied Mathematics in Physical Sciences

CircleCI Documentation Status License PyPI codecov Python 3.7-3.10 Code style: black

Neumann is a Python library that provides tools to formulate and solve problems related to all kinds of scientific disciplines. It is a part of the DewLoosh ecosystem which is designed mainly to solve problems related to computational solid mechanics, but if something is general enough, it ends up here. A good example is the included vector and tensor algebra modules, or the various optimizers, which are applicable in a much broader context than they were originally designed for.

The most important features:

  • Linear Algebra

    • A mechanism that guarantees to maintain the property of objectivity of tensorial quantities.
    • A ReferenceFrame class for all kinds of frames, and dedicated RectangularFrame and CartesianFrame classes as special cases, all NumPy compliant.
    • NumPy compliant classes like Tensor and Vector to handle various kinds of tensorial quantities efficiently.
    • A JaggedArray and a Numba-jittable csr_matrix to handle sparse data.
  • Operations Research

    • Classes to define and solve linear and nonlinear optimization problems.
      • A LinearProgrammingProblem class to define and solve any kind of linear optimization problem.
      • A BinaryGeneticAlgorithm class to tackle more complicated optimization problems.
  • Graph Theory

    • Algorithms to calculate rooted level structures and pseudo peripheral nodes of a networkx graph, which are useful if you want to minimize the bandwidth of sparse symmetrix matrices.

Note Be aware, that the library uses JIT-compilation through Numba, and as a result, first calls to these functions may take longer, but pay off in the long run.

Documentation

The documentation is hosted on ReadTheDocs.

Installation

Neumann can be installed (either in a virtual enviroment or globally) from PyPI using pip on Python >= 3.7:

>>> pip install neumann

or chechkout with the following command using GitHub CLI

gh repo clone dewloosh/Neumann

and install from source by typing

>>> python install setup.py

Motivating Examples

Linear Algebra

Define a reference frame $\mathbf{B}$ relative to the frame $\mathbf{A}$:

>>> from neumann.linalg import ReferenceFrame, Vector, Tensor
>>> A = ReferenceFrame(name='A', axes=np.eye(3))
>>> B = A.orient_new('Body', [0, 0, 90*np.pi/180], 'XYZ', name='B')

Get the DCM matrix of the transformation between two frames:

>>> B.dcm(target=A)

Define a vector $\mathbf{v}$ in frame $\mathbf{A}$ and show the components of it in frame $\mathbf{B}$:

>>> v = Vector([0.0, 1.0, 0.0], frame=A)
>>> v.show(B)

Define the same vector in frame $\mathbf{B}$:

>>> v = Vector(v.show(B), frame=B)
>>> v.show(A)

Linear Programming

Solve the following Linear Programming Problem (LPP) with one unique solution:

>>> from neumann.optimize import LinearProgrammingProblem as LPP
>>> from neumann.function import Function, Equality
>>> import sympy as sy
>>> variables = ['x1', 'x2', 'x3', 'x4']
>>> x1, x2, x3, x4 = syms = sy.symbols(variables, positive=True)
>>> obj1 = Function(3*x1 + 9*x3 + x2 + x4, variables=syms)
>>> eq11 = Equality(x1 + 2*x3 + x4 - 4, variables=syms)
>>> eq12 = Equality(x2 + x3 - x4 - 2, variables=syms)
>>> problem = LPP(cost=obj1, constraints=[eq11, eq12], variables=syms)
>>> problem.solve()['x']
array([0., 6., 0., 4.])

NonLinear Programming

Find the minimizer of the Rosenbrock function:

>>> from neumann.optimize import BinaryGeneticAlgorithm
>>> def Rosenbrock(x):
...     a, b = 1, 100
...     return (a-x[0])**2 + b*(x[1]-x[0]**2)**2
>>> ranges = [[-10, 10], [-10, 10]]
>>> BGA = BinaryGeneticAlgorithm(Rosenbrock, ranges, length=12, nPop=200)
>>> BGA.solve()
...

License

This package is licensed under the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

neumann-1.0.3.tar.gz (73.0 kB view details)

Uploaded Source

Built Distribution

neumann-1.0.3-py3-none-any.whl (85.8 kB view details)

Uploaded Python 3

File details

Details for the file neumann-1.0.3.tar.gz.

File metadata

  • Download URL: neumann-1.0.3.tar.gz
  • Upload date:
  • Size: 73.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for neumann-1.0.3.tar.gz
Algorithm Hash digest
SHA256 4b6dbd0f5321ee082be318741c14263181bfbcc4fcfe5115543680d849586643
MD5 b87d0225d75e2097b42b2d5c06b75c2e
BLAKE2b-256 188f6f8ac9c20c4981b84bcf3fae271104cdb97a6282728d3de2a8d187e1b903

See more details on using hashes here.

Provenance

File details

Details for the file neumann-1.0.3-py3-none-any.whl.

File metadata

  • Download URL: neumann-1.0.3-py3-none-any.whl
  • Upload date:
  • Size: 85.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for neumann-1.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 259313b516af97844bbbcb34579e45b4a7d4cf6b11297e5063c06a70edc2c5ca
MD5 dd60f5a61da26f250ddc0c11fb021d56
BLAKE2b-256 c2c4dd8ec46ace21fe4b3ada8cbdb32fcfa1e71c73804d9551580127792a6b8f

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page