Skip to main content

Repository of Intel® Neural Compressor

Project description

Intel® Neural Compressor

An open-source Python library supporting popular model compression techniques on all mainstream deep learning frameworks (TensorFlow, PyTorch, ONNX Runtime, and MXNet)

python version license coverage Downloads


Intel® Neural Compressor, formerly known as Intel® Low Precision Optimization Tool, is an open-source Python library that runs on Intel CPUs and GPUs, which delivers unified interfaces across multiple deep-learning frameworks for popular network compression technologies such as quantization, pruning, and knowledge distillation. This tool supports automatic accuracy-driven tuning strategies to help the user quickly find out the best quantized model. It also implements different weight-pruning algorithms to generate a pruned model with predefined sparsity goal. It also supports knowledge distillation to distill the knowledge from the teacher model to the student model. Intel® Neural Compressor is a critical AI software component in the Intel® oneAPI AI Analytics Toolkit.

Note: GPU support is under development.

Visit the Intel® Neural Compressor online document website at: https://intel.github.io/neural-compressor.

Installation

Prerequisites

Python version: 3.7, 3.8, 3.9, 3.10

Install on Linux

  • Release binary install
    # install stable basic version from pip
    pip install neural-compressor
    # Or install stable full version from pip (including GUI)
    pip install neural-compressor-full
    
  • Nightly binary install
    git clone https://github.com/intel/neural-compressor.git
    cd neural-compressor
    pip install -r requirements.txt
    # install nightly basic version from pip
    pip install -i https://test.pypi.org/simple/ neural-compressor
    # Or install nightly full version from pip (including GUI)
    pip install -i https://test.pypi.org/simple/ neural-compressor-full
    

More installation methods can be found at Installation Guide. Please check out our FAQ for more details.

Getting Started

Quantization with Python API

# A TensorFlow Example
pip install tensorflow
# Prepare fp32 model
wget https://storage.googleapis.com/intel-optimized-tensorflow/models/v1_6/mobilenet_v1_1.0_224_frozen.pb
import tensorflow as tf
from neural_compressor.experimental import Quantization, common
tf.compat.v1.disable_eager_execution()
quantizer = Quantization()
quantizer.model = './mobilenet_v1_1.0_224_frozen.pb'
dataset = quantizer.dataset('dummy', shape=(1, 224, 224, 3))
quantizer.calib_dataloader = common.DataLoader(dataset)
quantizer.fit()

Quantization with GUI

# An ONNX Example
pip install onnx==1.12.0 onnxruntime==1.12.1 onnxruntime-extensions
# Prepare fp32 model
wget https://github.com/onnx/models/raw/main/vision/classification/resnet/model/resnet50-v1-12.onnx
# Start GUI
inc_bench
Architecture

Quantization with Auto-coding API (Experimental)

from neural_coder import auto_quant
auto_quant(
    code="https://github.com/huggingface/transformers/blob/v4.21-release/examples/pytorch/text-classification/run_glue.py",
    args="--model_name_or_path albert-base-v2 \
          --task_name sst2 \
          --do_eval \
          --output_dir result \
          --overwrite_output_dir",
)

System Requirements

Intel® Neural Compressor supports systems based on Intel 64 architecture or compatible processors that are specifically optimized for the following CPUs:

  • Intel Xeon Scalable processor (formerly Skylake, Cascade Lake, Cooper Lake, and Icelake)
  • Future Intel Xeon Scalable processor (code name Sapphire Rapids)

Validated Software Environment

  • OS version: CentOS 8.4, Ubuntu 20.04
  • Python version: 3.7, 3.8, 3.9, 3.10
Framework TensorFlow Intel TensorFlow PyTorch IPEX ONNX Runtime MXNet
Version 2.9.1
2.8.2
2.7.3
2.9.1
2.8.0
2.7.0
1.12.0+cpu
1.11.0+cpu
1.10.0+cpu
1.12.0
1.11.0
1.10.0
1.11.0
1.10.0
1.9.0
1.8.0
1.7.0
1.6.0

Note: Set the environment variable TF_ENABLE_ONEDNN_OPTS=1 to enable oneDNN optimizations if you are using TensorFlow v2.6 to v2.8. oneDNN is the default for TensorFlow v2.9.

Validated Models

Intel® Neural Compressor validated 420+ examples for quantization with a performance speedup geomean of 2.2x and up to 4.2x on VNNI while minimizing accuracy loss. Over 30 pruning and knowledge distillation samples are also available. More details for validated models are available here.

Documentation

Overview
Architecture Examples GUI APIs
Intel oneAPI AI Analytics Toolkit AI and Analytics Samples
Basic API
Transform Dataset Metric Objective
Deep Dive
Quantization Pruning (Sparsity) Knowledge Distillation Mixed Precision Orchestration
Benchmarking Distributed Training Model Conversion TensorBoard
Distillation for Quantization Neural Coder (No-Code Solution)
Advanced Topics
Adaptor Strategy Reference Example

Selected Publications

View our full publication list.

Additional Content

Hiring

We are actively hiring. Send your resume to inc.maintainers@intel.com if you are interested in model compression techniques.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

neural_compressor-1.14.1.tar.gz (526.8 kB view details)

Uploaded Source

Built Distribution

neural_compressor-1.14.1-py3-none-any.whl (788.9 kB view details)

Uploaded Python 3

File details

Details for the file neural_compressor-1.14.1.tar.gz.

File metadata

  • Download URL: neural_compressor-1.14.1.tar.gz
  • Upload date:
  • Size: 526.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.4.0.post20200518 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.3

File hashes

Hashes for neural_compressor-1.14.1.tar.gz
Algorithm Hash digest
SHA256 690ad39dbb992cfeb1418179c8ea54338cb7a4fa04fd99bafc5267c36dc9a180
MD5 acd71a456f6ef26c3f430473c4104e9e
BLAKE2b-256 b0fee23fe4e3e65b4cb2b489b8508b6e8454cd4ae86677c160f5d25114046c47

See more details on using hashes here.

File details

Details for the file neural_compressor-1.14.1-py3-none-any.whl.

File metadata

  • Download URL: neural_compressor-1.14.1-py3-none-any.whl
  • Upload date:
  • Size: 788.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.4.0.post20200518 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.3

File hashes

Hashes for neural_compressor-1.14.1-py3-none-any.whl
Algorithm Hash digest
SHA256 841fb570054397f803876c9ab8f696e9e1e50a0457f64549b3602942f776bf66
MD5 5ce2a9052fd9496b1fd99dfb164e4d73
BLAKE2b-256 a766cadd3fdb747838b3718eea147ba8797ab69b17e80c0bd53ee02b48d78cc2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page