This is a pre-production deployment of Warehouse, however changes made here WILL affect the production instance of PyPI.
Latest Version Dependencies status unknown Test status unknown Test coverage unknown
Project Description

NeuralPy is a Python library for Artificial Neural Networks. You can run and test different Neural Network algorithms.

Installation

$ pip install neural-python

Dependence

  • Python 2.7, 3.3, 3.4
  • NumPy >= 1.9.0
  • SciPy >= 0.14.0
  • Matplotlib >= 1.4.0

Next steps

  • Bug fixing and version stabilization
  • Speeding up algorithms
  • Adding more algorithms

Library support

  • Radial Basis Functions Networks (RBFN)
  • Backpropagation and different optimization for it
  • Neural Network Ensembles
  • Associative and Autoasociative Memory
  • Competitive Networks
  • Step update algorithms for backpropagation
  • Weight control algorithms for backpropagation
  • Basic Linear Networks

Algorithms

  • Backpropagation
    • Classic Gradient Descent
    • Mini-batch Gradient Descent
    • Conjugate Gradient
      • Fletcher-Reeves
      • Polak-Ribiere
      • Hestenes-Stiefel
      • Conjugate Descent
      • Liu-Storey
      • Dai-Yuan
    • quasi-Newton
      • BFGS
      • DFP
      • PSB
      • SR1
    • Levenberg-Marquardt
    • Hessian diagonal
    • Momentum
    • RPROP
    • iRPROP+
    • QuickProp
  • Weight update rules
    • Weight Decay
    • Weight Elimination
  • Learning rate update rules
    • Adaptive Learning Rate
    • Error difference Update
    • Linear search by Golden Search or Brent
    • Wolfe line search
    • Search than converge
    • Simple Step Minimization
  • Ensembles
    • Mixture of Experts
    • Dynamically Averaged Network (DAN)
  • Radial Basis Functions Networks (RBFN)
    • Generalized Regression Neural Network (GRNN)
    • Probabilistic Neural Network (PNN)
    • Radial basis function K-means
  • Autoasociative Memory
    • Discrete BAM Network
    • CMAC Network
    • Discrete Hopfield Network
  • Competitive Networks
    • Adaptive Resonance Theory (ART1) Network
    • Self-Organizing Feature Map (SOFM or SOM)
  • Linear networks
    • Perceptron
    • LMS Network
    • Modified Relaxation Network
  • Associative
    • OJA
    • Kohonen
    • Instar
    • Hebb

Tests

$ pip install tox
$ tox
Release History

Release History

0.0.7

This version

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.0.6

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.0.5

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.0.4

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.0.3

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.0.2

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.0.1

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

Download Files

Download Files

TODO: Brief introduction on what you do with files - including link to relevant help section.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
neural-python-0.0.7.tar.gz (50.8 kB) Copy SHA256 Checksum SHA256 Source Sep 1, 2015

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS HPE HPE Development Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting