Skip to main content

PaddlePaddle implementation of "A 3D mesh renderer for neural networks"

Project description

Neural 3D Mesh Renderer in PadddlePaddle

A PaddlePaddle version of Neural Renderer, refer to its PyTorch version

Install

Run:

pip install neural-renderer-paddle

Usage

Check examples folder for usage.

Note

Unittest module is not compatiable with PaddlePaddle. If you want to run test, run:

git clone <THIS REPO> neural_renderer_paddle
pip install neural_renderer_paddle/
cd neural_renderer_paddle/tests
python -m unittest test_*.py

Original repo README:

Neural 3D Mesh Renderer (CVPR 2018)

This repo contains a PyTorch implementation of the paper Neural 3D Mesh Renderer by Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. It is a port of the original Chainer implementation released by the authors. Currently the API is the same as in the original implementation with some smalls additions (e.g. render using a general 3x4 camera matrix, lens distortion coefficients etc.). However it is possible that it will change in the future.

The library is fully functional and it passes all the test cases supplied by the authors of the original library. Detailed documentation will be added in the near future.

Requirements

Python 2.7+ and PyTorch 0.4.0.

The code has been tested only with PyTorch 0.4.0, there are no guarantees that it is compatible with older versions. Currently the library has both Python 3 and Python 2 support.

Note: In some newer PyTorch versions you might see some compilation errors involving AT_ASSERT. In these cases you can use the version of the code that is in the branch at_assert_fix. These changes will be merged into master in the near future.

Installation

You can install the package by running

pip install neural_renderer_pytorch

Since running install.py requires PyTorch, make sure to install PyTorch before running the above command.

Running examples

python ./examples/example1.py
python ./examples/example2.py
python ./examples/example3.py
python ./examples/example4.py

Example 1: Drawing an object from multiple viewpoints

Example 2: Optimizing vertices

Transforming the silhouette of a teapot into a rectangle. The loss function is the difference between the rendered image and the reference image.

Reference image, optimization, and the result.

Example 3: Optimizing textures

Matching the color of a teapot with a reference image.

Reference image, result.

Example 4: Finding camera parameters

The derivative of images with respect to camera pose can be computed through this renderer. In this example the position of the camera is optimized by gradient descent.

From left to right: reference image, initial state, and optimization process.

Citation

@InProceedings{kato2018renderer
    title={Neural 3D Mesh Renderer},
    author={Kato, Hiroharu and Ushiku, Yoshitaka and Harada, Tatsuya},
    booktitle={The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    year={2018}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

neural_renderer_paddle-1.1.3.4-py3-none-any.whl (31.2 kB view details)

Uploaded Python 3

File details

Details for the file neural_renderer_paddle-1.1.3.4-py3-none-any.whl.

File metadata

  • Download URL: neural_renderer_paddle-1.1.3.4-py3-none-any.whl
  • Upload date:
  • Size: 31.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.27.0 CPython/3.7.4

File hashes

Hashes for neural_renderer_paddle-1.1.3.4-py3-none-any.whl
Algorithm Hash digest
SHA256 e5aa05c236e7f82b078d9d67bc2113c3ea4b4539b9ef2a7687012ad23376598e
MD5 86998d5a9d9a3ab085bf0089ed947b64
BLAKE2b-256 00fecd07701242f7907a6c6c8328eabec749fec50f5fa220c8849b41504c4a7f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page