Skip to main content

Feed Forward Neural Networks

Project description

Feed Forward Neural Networks using NumPy

This library is a modification of my previous one. Click Here to check my previous library.

Installation

$ [sudo] pip3 install neuralnetworks-shine7

Development Installation

$ git clone https://github.com/Subhash3/Neural_Net_Using_NumPy.git

Usage

>>> from Model import NeuralNetwork

Creating a Neural Network

inputs = 2
outputs = 1
network = NeuralNetwork(inputs, outputs)

# Add 2 hidden layers with 16 neurons each and activation function 'tanh'
network.addLayer(16, activation_function="tanh") 
network.addLayer(16, activation_function="tanh")

# Finish the neural network by adding the output layer with sigmoid activation function.
network.compile(activation_function="sigmoid")

Building a dataset

The package contains a Dataset class to create a dataset.

>>> from Model import Dataset

Make sure you have inputs and target values in seperate files in csv format.

input_file = "inputs.csv"
target_file = "targets.csv"

# Create a dataset object with the same inputs and outputs defined for the network.
datasetCreator = Dataset(inputs, outputs)
datasetCreator.makeDataset(input_file, target_file)
data, size = datasetCreator.getRawData()

If you want to manually make a dataset, follow these rules:

  • Dataset must be a list of data samples.
  • A data sample is a list containing inputs and target values.
  • Input and target values are column vector of size (inputs x 1) and (outputs x 1) respectively.

For eg, a typical XOR data set looks something like :

>>> XOR_data = [
    [
        np.array([[0], [0]]),
        np.array([[0]])
    ],
    [
        np.array([[0], [1]]),
        np.array([[1]])
    ],
    [
        np.array([[1], [0]]),
        np.array([[1]])
    ],
    [
        np.array([[1], [1]]),
        np.array([[0]])
    ]
]
>>> size = 4

Training The network

The library provides a Train function which accepts the dataset, dataset size, and two optional parameters epochs, and logging.

def Train(dataset, size, epochs=5000, logging=True) :
	....
	....

For Eg: If you want to train your network for 1000 epochs.

>>> network.Train(data, size, epochs=1000)

Notice that I didn't change the value of log_outputs as I want the output to printed for each epoch.

Debugging

Plot a nice epoch vs error graph

>>> network.epoch_vs_error()

Know how well the model performed.

>>> network.evaluate()

To take a look at all the layers' info

>>> network.display()

Sometimes, learning rate might have to be altered for better convergence.

>>> network.setLearningRate(0.1)

Exporting Model

You can export a trained model to a json file which can be loaded and used for predictions in the future.

filename = "model.json"
network.export_model(filename)

Load Model

To load a model from an exported model (json) file. load_model is a static function, so you must not call this on a NeuralNetwork object!.

filename = "model.json"
network = NeuralNetwork.load_model(filename)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

neuralnetworks-shine7-0.0.12.tar.gz (7.6 kB view details)

Uploaded Source

Built Distribution

neuralnetworks_shine7-0.0.12-py3-none-any.whl (7.9 kB view details)

Uploaded Python 3

File details

Details for the file neuralnetworks-shine7-0.0.12.tar.gz.

File metadata

  • Download URL: neuralnetworks-shine7-0.0.12.tar.gz
  • Upload date:
  • Size: 7.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.6.9

File hashes

Hashes for neuralnetworks-shine7-0.0.12.tar.gz
Algorithm Hash digest
SHA256 11e127d990a50918b71b672b57090fceed477cbcf11dce7d6662ba849b043faa
MD5 bfa29c358b0fa990b25046760e32b724
BLAKE2b-256 774895f9abac35805b30656c80896c5334a2b19666f98730a32344cb7a5906b2

See more details on using hashes here.

File details

Details for the file neuralnetworks_shine7-0.0.12-py3-none-any.whl.

File metadata

  • Download URL: neuralnetworks_shine7-0.0.12-py3-none-any.whl
  • Upload date:
  • Size: 7.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.6.9

File hashes

Hashes for neuralnetworks_shine7-0.0.12-py3-none-any.whl
Algorithm Hash digest
SHA256 3a07a36e0fb21252308846488c7072b1a969502000e7646a0511260583e4beaa
MD5 568bb4c7560097ef258c009a9aad230b
BLAKE2b-256 f78f9ed226fb5e11d0241163bc5b8dfe5227098266642a28f42b84a258b16582

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page