Skip to main content

Feed Forward Neural Networks

Project description

Feed Forward Neural Networks using NumPy

This library is a modification of my previous one. Click Here to check my previous library.

Installation

$ [sudo] pip3 install neuralnetworks-shine7

Development Installation

$ git clone https://github.com/Subhash3/Neural_Net_Using_NumPy.git

Usage

>>> from Model import NeuralNetwork

Creating a Neural Network

inputs = 2
outputs = 1
network = NeuralNetwork(inputs, outputs)

# Add 2 hidden layers with 16 neurons each and activation function 'tanh'
network.addLayer(16, activation_function="tanh") 
network.addLayer(16, activation_function="tanh")

# Finish the neural network by adding the output layer with sigmoid activation function.
network.compile(activation_function="sigmoid")

Building a dataset

The package contains a Dataset class to create a dataset.

>>> from Model import Dataset

Make sure you have inputs and target values in seperate files in csv format.

input_file = "inputs.csv"
target_file = "targets.csv"

# Create a dataset object with the same inputs and outputs defined for the network.
datasetCreator = Dataset(inputs, outputs)
datasetCreator.makeDataset(input_file, target_file)
data, size = datasetCreator.getRawData()

If you want to manually make a dataset, follow these rules:

  • Dataset must be a list of data samples.
  • A data sample is a list containing inputs and target values.
  • Input and target values are column vector of size (inputs x 1) and (outputs x 1) respectively.

For eg, a typical XOR data set looks something like :

>>> XOR_data = [
    [
        np.array([[0], [0]]),
        np.array([[0]])
    ],
    [
        np.array([[0], [1]]),
        np.array([[1]])
    ],
    [
        np.array([[1], [0]]),
        np.array([[1]])
    ],
    [
        np.array([[1], [1]]),
        np.array([[0]])
    ]
]
>>> size = 4

Training The network

The library provides a Train function which accepts the dataset, dataset size, and two optional parameters epochs, and logging.

def Train(dataset, size, epochs=5000, logging=True) :
	....
	....

For Eg: If you want to train your network for 1000 epochs.

>>> network.Train(data, size, epochs=1000)

Notice that I didn't change the value of log_outputs as I want the output to printed for each epoch.

Debugging

Plot a nice epoch vs error graph

>>> network.epoch_vs_error()

Know how well the model performed.

>>> network.evaluate()

To take a look at all the layers' info

>>> network.display()

Exporting Model

You can export a trained model to a json file which can be loaded and used for predictions in the future.

filename = "model.json"
network.export_model(filename)

Load Model

To load a model from an exported model (json) file. load_model is a static function, so you must not call this on a NeuralNetwork object!.

filename = "model.json"
network = NeuralNetwork.load_model(filename)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

neuralnetworks-shine7-0.0.7.tar.gz (7.3 kB view details)

Uploaded Source

Built Distribution

neuralnetworks_shine7-0.0.7-py3-none-any.whl (7.5 kB view details)

Uploaded Python 3

File details

Details for the file neuralnetworks-shine7-0.0.7.tar.gz.

File metadata

  • Download URL: neuralnetworks-shine7-0.0.7.tar.gz
  • Upload date:
  • Size: 7.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.6.9

File hashes

Hashes for neuralnetworks-shine7-0.0.7.tar.gz
Algorithm Hash digest
SHA256 a0fea04fe7f499ca5f42361b6d69e7fd5e4d738e0202e23fbbf002ca6e376f5c
MD5 737bf5b6bc319269f852b7d7d61faa12
BLAKE2b-256 7ece0e30e78f504c80fb06bc7cd2f2a865c6acecaffac35e3528f354316b797c

See more details on using hashes here.

File details

Details for the file neuralnetworks_shine7-0.0.7-py3-none-any.whl.

File metadata

  • Download URL: neuralnetworks_shine7-0.0.7-py3-none-any.whl
  • Upload date:
  • Size: 7.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.6.9

File hashes

Hashes for neuralnetworks_shine7-0.0.7-py3-none-any.whl
Algorithm Hash digest
SHA256 d2bb99862553251f68e85eb07fd8bb833fd633c68006023817ae8e3f41a7ed17
MD5 1fabdaf7ee8f5861d9f074eee68981ac
BLAKE2b-256 945a552f86c67f396a0cb17ea17710f91faa1f04c1292518aafd59111b475a3c

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page