Skip to main content

An object oriented neural network implementation.

Project description

Neural-pleX

An object oriented neural network implementation.

Installation

pip install neuralplex

Instructions

You can construct a neural network by specifying the Perceptrons for each layer and adding the Layers to the Network.

This Network's input Layer has 4 input Perceptrons and its output Layer has 1 output Perceptron. The hidden Layer has 8 Perceptrons.

l1 = Layer(perceptrons=[Perceptron(m=random()) for i in range(0, 4)], step=STEP)

l2 = Layer(perceptrons=[Perceptron(m=random()) for i in range(0, 8)], step=STEP)

l3 = Layer(perceptrons=[Perceptron(m=random())], step=STEP)

n1 = Network(
    [
        l1,
        l2,
        l3,
    ]
)

Test

The Test will train a model that estimates a decimal value given a binary nibble.

Install package.

pip install neuralplex

Clone the repository.

git clone https://github.com/faranalytics/neuralplex.git

Change directory into the repository.

cd neuralplex

Run the tests.

python -m unittest -v

Output

test_nibbles (tests.test.Test.test_nibbles) ... Training the model.
Training iteration: 0
Training iteration: 1000
Training iteration: 2000
Training iteration: 3000
Training iteration: 4000
Training iteration: 5000
Training iteration: 6000
Training iteration: 7000
Training iteration: 8000
Training iteration: 9000
1 input: [0, 0, 0, 1], truth: 1 prediction: [1.8160007977374275]
2 input: [0, 0, 1, 0], truth: 2 prediction: [2.768211299141504]
3 input: [0, 0, 1, 1], truth: 3 prediction: [4.584212096878932]
4 input: [0, 1, 0, 0], truth: 4 prediction: [3.772563194981495]
5 input: [0, 1, 0, 1], truth: 5 prediction: [5.588563992718923]
6 input: [0, 1, 1, 0], truth: 6 prediction: [6.540774494122998]
7 input: [0, 1, 1, 1], truth: 7 prediction: [8.356775291860426]
8 input: [1, 0, 0, 0], truth: 8 prediction: [6.784403350226391]
9 input: [1, 0, 0, 1], truth: 9 prediction: [8.600404147963818]
10 input: [1, 0, 1, 0], truth: 10 prediction: [9.552614649367897]
11 input: [1, 0, 1, 1], truth: 11 prediction: [11.368615447105324]
12 input: [1, 1, 0, 0], truth: 12 prediction: [10.556966545207885]
13 input: [1, 1, 0, 1], truth: 13 prediction: [12.372967342945314]
14 input: [1, 1, 1, 0], truth: 14 prediction: [13.32517784434939]
15 input: [1, 1, 1, 1], truth: 15 prediction: [15.141178642086818]
R2: 0.9599237139109126
ok

----------------------------------------------------------------------
Ran 1 test in 0.333s

OK

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

neuralplex-0.0.6.tar.gz (5.4 kB view details)

Uploaded Source

Built Distribution

neuralplex-0.0.6-py3-none-any.whl (4.8 kB view details)

Uploaded Python 3

File details

Details for the file neuralplex-0.0.6.tar.gz.

File metadata

  • Download URL: neuralplex-0.0.6.tar.gz
  • Upload date:
  • Size: 5.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.8

File hashes

Hashes for neuralplex-0.0.6.tar.gz
Algorithm Hash digest
SHA256 03cd39db1afe1410590c84920892e627a2558c56aaa74a17778749bbfa9c68b0
MD5 dd8e29f8ece1b052f3166e8e7de4c00d
BLAKE2b-256 cccf9b885bc80679cb11a79d598e01d90672ba302c1f2605e65e901a28e1370c

See more details on using hashes here.

File details

Details for the file neuralplex-0.0.6-py3-none-any.whl.

File metadata

  • Download URL: neuralplex-0.0.6-py3-none-any.whl
  • Upload date:
  • Size: 4.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.8

File hashes

Hashes for neuralplex-0.0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 5045575ac3c4ec51726f76f644693c21a9312d38d4f6f8d8c5cb9708b65b9616
MD5 3325daed6dfeff03e5614cd7082ea8c0
BLAKE2b-256 61177021e13d41aba1768c194bfafa3d50019fb1dba09b763129ece09edc04b1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page