Skip to main content

Analysis functions to quantify inputs importance in neural network models.

Project description

NeuralSens

Jaime Pizarroso Gonzalo, jpizarroso@comillas.edu

Antonio Muñoz San Roque, Antonio.Munoz@iit.comillas.edu

José Portela González, jose.portela@iit.comillas.edu

Travis build status AppVeyor build status CRAN_Download_Badge

This is the development repository for the NeuralSens package. Functions within this package can be used for the analysis of neural network models created in R.

The current version of this package can be installed from Github:

install.packages('devtools')
library(devtools)
install_github('JaiPizGon/NeuralSens')

The last version can be installed from CRAN:

install.packages('NeuralSens')

Bug reports

Please submit any bug reports (or suggestions) using the issues tab of the GitHub page.

Functions

One function is available to analyze the sensitivity of a multilayer perceptron, evaluating variable importance and plotting the analysis results. A sample dataset is also provided for use with the examples. The function has S3 methods developed for neural networks from the following packages: nnet, neuralnet, RSNNS, caret, neural, h2o and forecast. Numeric inputs that describe model weights are also acceptable.

Start by loading the package and the sample dataset.

library(NeuralSens)
data(DAILY_DEMAND_TR)

The SensAnalysisMLP function analyze the sensitivity of the output to the input and plots three graphics with information about this analysis. To calculate this sensitivity it calculates the partial derivatives of the output to the inputs using the training data. The first plot shows information between the mean and the standard deviation of the sensitivity among the training data:

  • if the mean is different from zero, it means that the output depends on the input because the output changes when the input change.
  • if the mean is nearly zero, it means that the output could not depend on the input. If the standard deviation is also near zero it almost sure that the output does not depend on the variable because for all the training data the partial derivative is zero.
  • if the standard deviation is different from zero it means the the output has a non-linear relation with the input because the partial derivative derivative of the output depends on the value of the input.
  • if the standard deviation is nearly zero it means that the output has a linear relation with the input because the partial derivative of the output does not depend on the value of the input. The second plot gives an absolute measure to the importance of the inputs, by calculating the sum of the squares of the partial derivatives of the output to the inputs. The third plot is a density plot of the partial derivatives of the output to the inputs among the training data, giving similar information as the first plot.
# Scale the data
DAILY_DEMAND_TR[,4] <- DAILY_DEMAND_TR[,4]/10
DAILY_DEMAND_TR[,2] <- DAILY_DEMAND_TR[,2]/100
# Parameters of the neural network
hidden_neurons <- 5
iters <- 250
decay <- 0.1

# create neural network
library(caret)
ctrl_tune <- trainControl(method = "boot",
                          savePredictions = FALSE,
                          summaryFunction = defaultSummary)
set.seed(150) #For replication
mod <- caret::train(form = DEM~TEMP + WD,
                    data = DAILY_DEMAND_TR,
                    method = "nnet",
                    linout = TRUE,
                    tuneGrid = data.frame(size = hidden_neurons,
                                          decay = decay),
                    maxit = iters,
                    preProcess = c("center","scale"),
                    trControl = ctrl_tune,
                    metric = "RMSE")

# Analysis of the neural network
sens <- SensAnalysisMLP(mod)

Apart from the plot created with the SensAnalysisMLP function by an internal call to SensitivityPlot, other plots can be obtained to analyze the neural network model. If it is a forecast problem, the SensTimePlot function returns a plot which shows how the sensitivity of the output changes over the time of the data.

SensTimePlot(sens, fdata = DAILY_DEMAND_TR, facet = TRUE)

Also, a more detailed plot about the distribution of the variables can be obtained with the SensFeaturePlot function. This function returns a scatter plot over a violin plot for each input variable, where each point represent a sensitivity value of a sample of the dataset. The color of each point depends on the value of the input for its corresponding sample.

SensFeaturePlot(sens, fdata = DAILY_DEMAND_TR)

License

This package is released in the public domain under the General Public License GPL.

Association

Package created in the Institute for Research in Technology (IIT), link to homepage

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

neuralsens-0.0.1.dev5.tar.gz (22.9 kB view details)

Uploaded Source

Built Distribution

neuralsens-0.0.1.dev5-py3-none-any.whl (20.4 kB view details)

Uploaded Python 3

File details

Details for the file neuralsens-0.0.1.dev5.tar.gz.

File metadata

  • Download URL: neuralsens-0.0.1.dev5.tar.gz
  • Upload date:
  • Size: 22.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.7

File hashes

Hashes for neuralsens-0.0.1.dev5.tar.gz
Algorithm Hash digest
SHA256 57a9dd098c2e7271fc03f3398f9e0ea7c5bd78bd77c3690a516e346148a4303c
MD5 6027ccda855eaa72e41f200085a18999
BLAKE2b-256 20db2f507a85395d74f854e235e669b2462bb9f69020bcccab751780a4730cfb

See more details on using hashes here.

File details

Details for the file neuralsens-0.0.1.dev5-py3-none-any.whl.

File metadata

File hashes

Hashes for neuralsens-0.0.1.dev5-py3-none-any.whl
Algorithm Hash digest
SHA256 3254ed2f34b00b6d89b7b15e2de4d3d34438b705cdb89b48eca5f77620ca52a0
MD5 5679fe18a5e40c659ad8a2b1d6b0dca2
BLAKE2b-256 095ff6267f5b4277bfae8a4386653d751ff391a3888b7e7781c87835e2f6710a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page